A novel modified glassy carbon electrode (GCE) was successfully fabricated with a tetra-component nanocomposite consisting of (1,1'-(1,4-butanediyl)dipyridinium) ionic liquid (bdpy), SiWONi(HO) (SiWNi) Keggin-type polyoxometalate (POM), and phosphorus-doped electrochemically reduced graphene oxide (P-ERGO) by electrodeposition technique. The (bdpy)SiWNi/GO hybrid nanocomposite was synthesized by a one-pot hydrothermal method and characterized by UV-vis absorption, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric-differential thermal analysis (TGA/DTA), and transmission electron microscopy (TEM). The morphology, electrochemical performance, and electrocatalysis activity of the nanocomposite modified glassy carbon electrode ((bdpy)SiWNi/P-ERGO/GCE) were analyzed by field emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), cyclic voltammetry (CV), square wave voltammetry (SWV), and amperometry, respectively. Under the optimum experimental conditions, the as-prepared sensor showed high sensitivity of 28.1 μA mM and good selectivity for iodate (IO ) reduction, enabling the detection of IO within a linear range of 10-1600 μmol L ( = 0.9999) with a limit of detection (LOD) of 0.47 nmol L (S/N = 3). The proposed electrochemical sensor exhibited good reproducibility, and repeatability, high stability, and excellent anti-interference ability, as well as analytical performance in mineral water, tap water, and commercial edible iodized salt which might provide a capable platform for the determination of IO .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695343PMC
http://dx.doi.org/10.1039/d1ra00845eDOI Listing

Publication Analysis

Top Keywords

modified glassy
12
glassy carbon
12
carbon electrode
12
electrochemically reduced
8
reduced graphene
8
graphene oxide
8
nanocomposite modified
8
electron microscopy
8
electrochemical investigation
4
investigation amperometry
4

Similar Publications

CuSeO@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione.

Talanta

January 2025

International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan. Electronic address:

Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH).

View Article and Find Full Text PDF

The inclusion of redox mediators into electrocatalytic systems facilitates rapid electron shuttling kinetics and boosts the overall catalytic performance of the electrode. This approach overcomes the sluggish reaction dynamics associated with direct electron transfer, which may be impeded by restricted analyte access to the electrode's active sites. In contrast to conventional synthetic redox mediators, naturally sourced phytomolecule rutin trihydrate (RT), extracted from apple juice, offers potential ecological advantages.

View Article and Find Full Text PDF

Lipid peroxidation is a major process that determines the quality of various oil samples during their use and storage, in which the primary products are hydroperoxides (HP'). HP' are very stable compounds at ambient conditions and are harmful to human health. Therefore, the evaluation of the degree of oil oxidation is an excellent tool for ensuring food safety.

View Article and Find Full Text PDF

Aptamer-antibody sandwich immunosensor for electrochemical detection of FT4.

Mikrochim Acta

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, P. R. China.

An aptamer-antibody sandwich electrochemical immunosensor was studied. FeO/MWCNTs-COOH/Nafion was modified and fixed on a glassy carbon electrode to amplify electrical signals. The antibody was coupled with AuNPs to form conjugates.

View Article and Find Full Text PDF

A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!