This work studies a novel sustainable polymeric material made from a reactive blend of two agri-food waste plastics, with the new material showing strong promise for value-added industrial uses. Discarded bale wrap destined for landfill that was originally made from linear low density polyethylene (LLDPE) and used polyethylene terephthalate (PET)-based plastic bottles were melt mixed in a twin-screw extruder. The miscibility of such recycled LLDPE (rLLDPE) in recycled PET (rPET) is enhanced by the incorporation of a compatibilizer and the PET molecular architecture is maintained using a chain extender, which governs its melt strength. Microscopic analysis of the blends with the compatibilizer and chain extender confirms the enhanced interaction of rPET and rLLDPE chains and the formation of co-continuous morphologies. The efficient interaction of a soft phase (rLLDPE) with a hard phase (rPET) leads to prolonged fracture propagation by an appropriate impact energy transfer mechanism, which ultimately enhances the impact resistance and elongation at break of the resulting blend. The incorporation of a compatibilizer and chain extender in the rPET/rLLDPE blend makes it a toughened blend (with 60 J m notched Izod impact strength) with ∼80% elongation at break in comparison to ∼3% for the blend without a compatibilizer or chain extender. Around ∼36% enhancement is observed in the tensile strength without affecting the tensile and flexural modulus in comparison to the blend without a compatibilizer or chain extender. Applications of the developed materials can extend from rigid packaging applications to the production of filaments for 3D printing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695198 | PMC |
http://dx.doi.org/10.1039/d1ra00254f | DOI Listing |
Pharmaceutics
December 2024
Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.
The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with ,-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Mitsubishi Gas Chemical Company, Inc., Tokyo 100-8324, Japan.
Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and ,-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh, 2-octenylsuccinic acid (OSA), and itaconic acid (IA) bearing an exomethylene group for polymerization. OSA was a chain extender by intermolecular condensation and a stopper by intramolecular cyclization to inhibit cross-linkage.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
The motility of sperm decreases following cryopreservation, which is closely associated with mitochondrial function. However, the alterations in mitochondrial metabolism after sperm freezing in goats remain unclear. This experiment aimed to investigate the impact of ultra-low temperature freezing on goat sperm's mitochondrial energy metabolism and its potential correlation with sperm motility.
View Article and Find Full Text PDFFront Chem
January 2025
GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Zamudio, Spain.
Within the context of the circular economy, the transformation of agri-food waste or by-products into valuable products is essential to promoting a transition towards more sustainable and efficient utilisation of resources. Whey is a very abundant by-product of dairy manufacturing. Apart from partial reutilisation in animal feed or some food supplements, the sustainable management and disposal of whey still represent significant environmental challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!