Carbon nanotubes (CNTs) have been considered as promising electrode materials for energy storage devices, especially flexible electronics owing to their excellent electrical, physicochemical and mechanical properties. However, the severe aggregation between CNTs significantly reduces the electrochemically active surface areas and thus degrades the electrochemical properties. In this study, we demonstrate a facile layer-by-layer strategy toward preparing a CNT/hollow carbon nanocage (HCNC) hybrid film. Through electrochemically removing the impurities in CNT films and optimizing the concentrations of HCNC, the hybrid film exhibits a high specific capacitance of 183.7 F g at 10 mV s and good cycling stability of 85% retention after 5000 cycles at 1 A g. Our study provides potential scale-up synthesis of free-standing CNT electrode materials for high-performance supercapacitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694920PMC
http://dx.doi.org/10.1039/d0ra09710aDOI Listing

Publication Analysis

Top Keywords

carbon nanocage
8
high-performance supercapacitors
8
electrode materials
8
hcnc hybrid
8
hybrid film
8
highly flexible
4
flexible free-standing
4
carbon
4
free-standing carbon
4
carbon nanotube/hollow
4

Similar Publications

Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.

View Article and Find Full Text PDF

Electrochemical capacitors (ECs) offer superior specific capacitance for energy storage compared to traditional electrolytic capacitors but face limitations in alternating current (AC) filtering due to the need for balancing fast response and high capacitance. This study addresses these challenges by developing a freestanding nanostructured carbon electrode, derived from the rapid carbonization of bacterial cellulose (BC) embedded with zeolitic imidazolate framework 8 (ZIF-8) and in situ formed carbon nanotubes (CNTs). The electrode exhibits an exceptionally low area resistance of 9.

View Article and Find Full Text PDF

The rational design of microwave absorption (MA) material featuring light weight, wide absorption bandwidth, and infrared stealth property is crucial for military stealth and health protection but remains challenging. Herein, an innovative N-doped carbon nanocage-in-microcage structure with tunable carbon-coated Ni (NC/Ni(HS)) is reported via a reliable Ni-catalyzed and Ni-templated method. The hierarchically hollow structure of nanocage-in-microcage composites can optimize the impedance matching and respond to multiple reflections and scattering of incident microwaves and infrared waves.

View Article and Find Full Text PDF

Nanomaterials based on hollow gold nanospheres for cancer therapy.

Regen Biomater

October 2024

State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China.

Article Synopsis
  • * HGNs have superior properties, such as higher photothermal conversion efficiency and enhanced Raman scattering, making them preferable for targeted drug delivery and tumor imaging.
  • * The review highlights the synthesis methods for HGNs and their applications in cancer diagnostics and therapy, while also addressing current challenges for future advancements in HGN-based nanomaterials.
View Article and Find Full Text PDF

Chiroptical Response of Carbon Nanocages Enhanced by Achiral Guests.

Angew Chem Int Ed Engl

November 2024

Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.

Opening up [60]fullerene makes itself inherently chiral without loss of congenital π-conjugation. An immoderately large aperture on [60]fullerene, however, renders the molecule less rigid and therefore it would reduce dissymmetry factors. Herein, we examined supramolecular technique in geometrical reinforcement of chiral open-[60]fullerenes by encasing achiral guests such as Ar, CO, and CHCN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!