Negatively charged diamond nanoparticles are known to be generated in the gas phase of the hot filament chemical vapor deposition (HFCVD) process. However, the structures of these nanoparticles remain unknown. Also, the effect of charging on the stability of nanodiamond structures has not been studied experimentally. Here, by installing a capturing apparatus in an HFCVD reactor, we succeeded in capturing nanoparticles on the floating and grounded SiO, carbon, and graphene membranes of a copper transmission electron microscope grid during HFCVD. We examined the effect of charge on the crystal structure of nanodiamonds captured for 10 s under various conditions and identified four carbon allotropes, which are i-carbon, hexagonal diamond, n-diamond, and cubic diamond, by analyzing 150 -spacings of ∼100 nanoparticles for each membrane. Nanoparticles captured on the floating membrane consisted mainly of cubic diamond and n-diamond, whereas those captured on the grounded membrane consisted mainly of i-carbon. Diamond particles deposited for 8 h on the floating silicon (Si) substrate exhibited an octahedron shape with well-developed facets, and a high-intensity 1332 cm Raman peak, whereas diamond particles deposited on the grounded Si substrate showed a spherical shape partially covered with crystalline facets with a broad G-band Raman peak. These results indicate that charging stabilizes the diamond structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694773PMC
http://dx.doi.org/10.1039/d0ra09649kDOI Listing

Publication Analysis

Top Keywords

diamond nanoparticles
8
nanoparticles captured
8
captured floating
8
floating grounded
8
hot filament
8
filament chemical
8
chemical vapor
8
vapor deposition
8
diamond n-diamond
8
cubic diamond
8

Similar Publications

Naegleria fowleri, is the causative agent of Primary Amoebic Meningoencephalitis (PAM), a lethal acute brain inflammation with high mortality. The virulent and reproductively active trophozoite stage of N. fowleri migrates to central nervous system (CNS) by entering through nasal passage and causes severe neural infection, brain disease and inflammation with high mortality.

View Article and Find Full Text PDF

A green chemical shear-thickening polishing (GC-STP) method was studied to improve the surface precision and processing efficiency of monocrystalline silicon. A novel green shear-thickening polishing slurry composed of silica nanoparticles, alumina abrasive, sorbitol, plant ash, polyethylene glycol, and deionized water was formulated. The monocrystalline silicon was roughly ground using a diamond polishing slurry and then the GC-STP process.

View Article and Find Full Text PDF

An attenuation of visible probe radiation identified in earlier absorption studies of microwave plasma-activated CH/H/Ar gas mixtures is shown to arise from nanoparticles in under-pumped regions on opposing sides of a reactor used for diamond chemical vapor deposition. The present modeling studies highlight (i) ejection of Si-containing species into the gas phase by reactive radical etching of the quartz window through which the microwave radiation enters the reactor, enabled by suitably high window temperatures () and the synergistic action of near-window H atoms and CH radicals; (ii) subsequent processing of the ejected material, some of which are transported to and accumulate in stagnation regions in the entrance to the reactor side arms; and (iii) the importance of Si in facilitating homogeneous gas phase nucleation, clustering, and nanoparticle growth in these regions. The observed attenuation, its probe wavelength dependence, and its variations with changes in process conditions can all be rationalized by a combination of absorption and scattering contributions from Si/C/H containing nanoparticles with diameters in the range of 50-100 nm.

View Article and Find Full Text PDF

Upon exposure to biological environments, nanoparticles are rapidly coated with biomolecules, predominantly proteins, which alter their colloidal stability, biodistribution, and cell interactions. Despite extensive efforts to investigate the nanoparticles' fate, only a few studies use high-resolution characterization methods that allow in-depth characterization, and the existing methodologies are unable to differentiate particles internalized at the onset of incubation from those taken up toward the end of an incubation period. In this study, these limitations related to incubation disparities are overcame and precisely monitored the spatiotemporal displacement of colloidally stable protein corona-coated nanoparticles within cells.

View Article and Find Full Text PDF

Expression of concern: An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles.

Analyst

December 2024

Institut de Recherche Interdisciplinaire (IRI), CNRS USR 3078, Université Lille1, Parc de la Haute Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.

Expression of concern for 'An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles' by Palaniappan Subramanian , , 2014, , 1726-1731, https://doi.org/10.1039/C3AN02045B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!