Diet-gut microbiota interactions on cardiovascular disease.

Comput Struct Biotechnol J

Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.

Published: March 2022

Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels and remain the leading cause of morbidity and mortality worldwide. Over the past decades, accumulating studies indicated that the gut microbiota, an indispensable "invisible organ", plays a vital role in human metabolism and disease states including CVD. Among many endogenous and exogenous factors that can impact gut microbial communities, the dietary nutrients emerge as an essential component of host-microbiota relationships that can be involved in CVD susceptibility. In this review, we summarize the major concepts of dietary modulation of the gut microbiota and the chief principles of the involvement of this microbiota in CVD development. We also discuss the mechanisms of diet-microbiota crosstalk that regulate CVD progression, including endotoxemia, inflammation, gut barrier dysfunction and lipid metabolism dysfunction. In addition, we describe how metabolites produced by the microbiota, including trimethylamine-N-oxide (TMAO), secondary bile acids (BAs), short chain fatty acids (SCFAs) as well as aromatic amino acids (AAAs) derived metabolites play a role in CVD pathogenesis. Finally, we present the potential dietary interventions which interacted with gut microbiota as novel preventive and therapeutic strategies for CVD management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983311PMC
http://dx.doi.org/10.1016/j.csbj.2022.03.028DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
cvd
7
gut
5
microbiota
5
diet-gut microbiota
4
microbiota interactions
4
interactions cardiovascular
4
cardiovascular disease
4
disease cardiovascular
4
cardiovascular diseases
4

Similar Publications

Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.

View Article and Find Full Text PDF

Microbiota analysis of perimenopausal women experiencing recurrent vaginitis in conjunction with urinary tract infection.

BMC Microbiol

January 2025

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.

Background: Recurrent vaginitis in conjunction with urinary tract infection (RV/UTI) in perimenopausal women is a common clinical condition that impacts both doctors and patients. Its pathogenesis is not completely known, but the urogenital microbiota is thought to be involved. We compared the urogenital and gut microbiotas of perimenopausal women experiencing RV/UTI with those of age-matched controls to provide a new microbiological perspective and scheme for solving clinical problems.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) in combination with antiangiogenic drugs have shown promising outcomes in the third-line and subsequent treatments of patients with microsatellite stable metastatic colorectal cancer (MSS-mCRC). Radiotherapy (RT) may enhance the antitumor effect of immunotherapy. However, the effect of RT exposure on patients receiving ICIs and targeted therapy remains unclear.

View Article and Find Full Text PDF

Insights into Toxicological Mechanisms of Per-/polyfluoroalkyl Substances by Using Omics-centered Approaches.

Environ Pollut

January 2025

College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:

The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.

View Article and Find Full Text PDF

Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9.

Dev Cell

December 2024

Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:

The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!