AI Article Synopsis

  • Breast cancer is the most common cancer that causes deaths in women and is not just one disease, but a group of different diseases that affect the breast.
  • Recent treatments like targeted therapies and immunotherapies have helped many patients live longer, but they don't always stop the cancer from coming back or spreading.
  • Scientists are using new technologies called "omics" to better understand breast cancer by looking at things like genes and proteins, which could help with improving diagnosis and treatments in the future.

Article Abstract

Worldwide, breast cancer is the leading cause of cancer-related deaths in women. Breast cancer is a heterogeneous disease characterized by different clinical outcomes in terms of pathological features, response to therapies, and long-term patient survival. Thus, the heterogeneity found in this cancer led to the concept that breast cancer is not a single disease, being very heterogeneous both at the molecular and clinical level, and rather represents a group of distinct neoplastic diseases of the breast and its cells. Indubitably, in the past decades we witnessed a significant development of innovative therapeutic approaches, including targeted and immunotherapies, leading to impressive results in terms of increased survival for breast cancer patients. However, these multimodal treatments fail to prevent recurrence and metastasis. Therefore, it is urgent to improve our understanding of breast tumor and metastasis biology. Over the past few years, high-throughput "omics" technologies through the identification of novel biomarkers and molecular profiling have shown their great potential in generating new insights in the study of breast cancer, also improving diagnosis, prognosis and prediction of response to treatment. In this review, we discuss how the implementation of "omics" strategies and their integration may lead to a better comprehension of the mechanisms underlying breast cancer. In particular, with the aim to investigate the correlation between different "omics" datasets and to define the new important key pathway and upstream regulators in breast cancer, we applied a new integrative meta-analysis method to combine the results obtained from genomics, proteomics and metabolomics approaches in different revised studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010455PMC
http://dx.doi.org/10.1038/s41389-022-00393-8DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
breast
10
cancer
8
cancer era
4
era integrating
4
"omics"
4
integrating "omics"
4
"omics" approaches
4
approaches worldwide
4
worldwide breast
4

Similar Publications

Purpose: To compare the performance of ultrafast MRI with standard MRI in classifying histological factors and subtypes of invasive breast cancer among radiologists with varying experience.

Methods: From October 2021 to November 2022, this prospective study enrolled 225 participants with 233 breast cancers before treatment (NCT06104189 at clinicaltrials.gov).

View Article and Find Full Text PDF

Objective: Breast cancer is one of the most common types of cancer in China and worldwide. Apart from cancer, a majority of breast cancer patients suffer from various psychological disorders concurrently. The purpose of this study is to understand the actual experiences of breast cancer patients participating in Virtual Reality (VR) for psychological intervention, and to provide a theoretical basis for the development of VR psychological rehabilitation in China.

View Article and Find Full Text PDF

Pharmacological, computational, and mechanistic insights into triptolide's role in targeting drug-resistant cancers.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.

As a promising candidate for tackling drug-resistant cancers, triptolide, a diterpenoid derived from the Chinese medicinal plant Tripterygium wilfordii, has been developed. This review summarizes potential antitumor activities, including the suppression of RNA polymerase II, the suppression of heat shock proteins (HSP70 and HSP90), and the blockade of NF-kB signalling. Triptolide is the first known compound to target cancer cells specifically but spare normal cells, and it has success in treating cancers that are difficult to treat, including pancreatic, breast, and lung cancers.

View Article and Find Full Text PDF

CRISPR-Cas12a-Mediated Growth of Gold Nanoparticles for DNA Detection in Agarose Gel.

ACS Sens

January 2025

Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.

The rapid, simple, and sensitive detection of nucleic acid biomarkers plays a significant role in clinical diagnosis. Herein, we develop a label-free and point-of-care approach for isothermal DNA detection through the trans-cleavage activity of CRISPR-Cas12 and the growth of gold nanomaterials in agarose gel. The presence of the target can activate CRISPR-Cas12a to cleave single-stranded DNA, thus modulating the length and number of DNA sequences that mediate the growth of gold nanoparticles (AuNPs) or gold nanorods (AuNRs).

View Article and Find Full Text PDF

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!