Evolution, structure and function of divergent macroH2A1 splice isoforms.

Semin Cell Dev Biol

Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain; Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain. Electronic address:

Published: February 2023

The replacement of replication-coupled histones with non-canonical histone variants provides chromatin with additional properties and contributes to the plasticity of the epigenome. MacroH2A histone variants are counterparts of the replication-coupled histone H2A. They are characterized by a unique tripartite structure, consisting of a histone fold, an unstructured linker, and a globular macrodomain. MacroH2A1.1 and macroH2A1.2 are the result of alternative splicing of the MACROH2A1 gene and can have opposing biological functions. Here, we discuss the structural differences between the macrodomains of the two isoforms, resulting in differential ligand binding. We further discuss how this modulates gene regulation by the two isoforms, in cases resulting in opposing role of macroH2A1.1 and macroH2A1.2 in development and differentiation. Finally, we share recent insight in the evolution of macroH2As. Taken together, in this review, we aim to discuss in unprecedented detail distinct properties and functions of the fascinating macroH2A1 splice isoforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2022.03.036DOI Listing

Publication Analysis

Top Keywords

macroh2a1 splice
8
splice isoforms
8
histone variants
8
macroh2a11 macroh2a12
8
evolution structure
4
structure function
4
function divergent
4
divergent macroh2a1
4
isoforms
4
isoforms replacement
4

Similar Publications

DNA transactions introduce torsional constraints that pose an inherent risk to genome integrity. While topoisomerase 1 (TOP1) activity is essential for removing DNA supercoiling, aberrant stabilization of TOP1:DNA cleavage complexes (TOP1ccs) can result in cytotoxic DNA lesions. What protects genomic hot spots of topological stress from aberrant TOP1 activity remains unknown.

View Article and Find Full Text PDF

Ineffective hematopoiesis is a hallmark of myelodysplastic syndromes (MDS). Hematopoietic alterations in MDS patients strictly correlate with microenvironment dysfunctions, eventually affecting also the mesenchymal stromal cell (MSC) compartment. Stromal cells are indeed epigenetically reprogrammed to cooperate with leukemic cells and propagate the disease as "tumor unit"; therefore, changes in MSC epigenetic profile might contribute to the hematopoietic perturbations typical of MDS.

View Article and Find Full Text PDF

DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood.

View Article and Find Full Text PDF

Evolution, structure and function of divergent macroH2A1 splice isoforms.

Semin Cell Dev Biol

February 2023

Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain; Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain. Electronic address:

The replacement of replication-coupled histones with non-canonical histone variants provides chromatin with additional properties and contributes to the plasticity of the epigenome. MacroH2A histone variants are counterparts of the replication-coupled histone H2A. They are characterized by a unique tripartite structure, consisting of a histone fold, an unstructured linker, and a globular macrodomain.

View Article and Find Full Text PDF

Somatic mutations in spliceosome genes are found in ∼50% of patients with myelodysplastic syndromes (MDS), a myeloid malignancy associated with low blood counts. Expression of the mutant splicing factor U2AF1(S34F) alters hematopoiesis and mRNA splicing in mice. Our understanding of the functionally relevant alternatively spliced target genes that cause hematopoietic phenotypes in vivo remains incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!