Introduction: The objectives of this study were to simulate long-term orthodontic tooth movement in en-masse retraction using the finite element method and investigate the effects of power arms on tooth movements when using a lingual appliance in comparison with a labial appliance.

Methods: A 3-dimensional finite element model of the maxillary dentition was constructed with 0.018-in brackets and 0.016 × 0.022-in stainless steel archwire. An en-masse retraction was performed by applying retraction force at various lengths of the power arm (4, 6, 8, and 10 mm) to the second molar tube, and long-term tooth movements with the lingual and labial appliances were analyzed using the finite element method.

Results: Although lingual crown tipping of the incisor was more marked with the lingual appliance than with the labial appliance in the early phase of space closure, only a slight difference was evident after space closure. Although the power arm was effective for achieving better-controlled tooth movement and reducing vertical and transverse bowing effects, bodily movement of the incisor could not be achieved, and bowing effects could not be eliminated.

Conclusions: To provide better torque control of the incisor or prevent a vertical bowing effect, the incorporation of extra torque into brackets of incisors was recommended, and the use of power arms for the lingual appliance. To prevent a transverse bowing effect, incorporation of the antibowing bend or application of retraction force from both buccal and lingual sides or temporary skeletal anchorage devices was recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2021.03.024DOI Listing

Publication Analysis

Top Keywords

lingual appliance
16
tooth movement
12
space closure
12
finite element
12
appliance comparison
8
comparison labial
8
labial appliance
8
en-masse retraction
8
power arms
8
tooth movements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!