Magnetic field-assisted aligned patterning in an alginate-silk fibroin/nanocellulose composite for guided wound healing.

Carbohydr Polym

Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:

Published: July 2022

This study was focused on utilizing the magneto-responsiveness of cellulose nanocrystals (CNCs) in an alginate-silk fibroin (ASF) matrix under a low-strength (0.28 T) magnetic field (MF) for fabrication of a magnetically aligned, anisotropic, three-dimensional wound healing scaffold. The effect of the MF on three different concentrations of CNCs (0.5%, 1%, and 2%) was studied to control the alignment of the ASF scaffold. The as-fabricated scaffolds exhibited a concentration-dependent anisotropy with respect to the CNCs. The SEM, AFM, and, SAXS analysis indicated a higher degree of anisotropy of the MF-treated scaffolds with significant enhancement of Young's modulus vis-à-vis control, demonstrating their mechanical stability. Skin fibroblasts, keratinocytes, and endothelial cells cultured on the magnetically aligned scaffolds showed enhanced proliferation in vitro and demonstrated rapid wound closure under in vivo conditions. Hence, the magnetic property of CNCs could be useful for developing biomimetic anisotropic constructs for wound healing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119321DOI Listing

Publication Analysis

Top Keywords

wound healing
12
magnetically aligned
8
magnetic field-assisted
4
field-assisted aligned
4
aligned patterning
4
patterning alginate-silk
4
alginate-silk fibroin/nanocellulose
4
fibroin/nanocellulose composite
4
composite guided
4
wound
4

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

To develop and validate a nomogram for predicting the risk of adverse events (intraoperative massive haemorrhage or retained products of conception) associated with the termination of Caesarean scar pregnancy (CSP). Data were retrospectively collected from patients diagnosed with CSP who underwent Dilation and Curettage (D&C) at two hospitals. This data was divided into internal and external cohorts for analysis.

View Article and Find Full Text PDF

Introduction: Continued interest in the optimization of recovery in aesthetics has led to the exploration of adjunctive therapies. Hyperbaric oxygen therapy (HBOT) serves as one such therapy that may have an impact in this field. HBOT is hypothesized to improve ischemia, reduce swelling, and minimize secondary hypoxic tissue damage.

View Article and Find Full Text PDF

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!