SHMT2 promotes cell viability and inhibits ROS-dependent, mitochondrial-mediated apoptosis via the intrinsic signaling pathway in bladder cancer cells.

Cancer Gene Ther

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.

Published: October 2022

AI Article Synopsis

  • Mitochondrial serine hydroxymethyltransferase (SHMT2) is crucial for bladder cancer cell growth by converting serine into glycine, producing one-carbon units necessary for cell proliferation and redox balance.
  • SHMT2 knockdown leads to increased reactive oxygen species (ROS), loss of mitochondrial function, and subsequent apoptosis, illustrating the role of SHMT2 in maintaining cell survival.
  • Inhibiting SHMT2 with specific compounds like SHIN1 shows potential to hinder bladder cancer cell growth, and combining treatments with one-carbon donors (formate) or ROS scavengers (NAC) can rescue apoptosis, suggesting a promising avenue for cancer therapies.

Article Abstract

Mitochondrial serine hydroxymethyltransferase (SHMT2) catalyzes the conversion of serine to glycine and concomitantly produces one-carbon units to support cell growth and is upregulated in various cancer cells. SHMT2 knockdown triggers cell apoptosis; however, the detailed mechanism of apoptosis induced by SHMT2 inactivation remains unknown. Here, we demonstrate that SHMT2 supports the proliferation of bladder cancer (BC) cells by maintaining redox homeostasis. SHMT2 knockout decreased the pools of purine and one-carbon units and delayed cell cycle progression in a manner that was rescued by formate, demonstrating that SHMT2-mediated one-carbon units are essential for BC cell proliferation. SHMT2 deficiency promoted the accumulation of intracellular reactive oxygen species (ROS) by decreasing the NADH/NAD, NADPH/NADP, and GSH/GSSG ratios, leading to a loss in mitochondrial membrane potential, release of cytochrome c, translocation of Bcl-2 family protein and activation of caspase-3. Notably, blocking ROS production with the one-carbon donor formate and the ROS scavenger N-acetyl-cysteine (NAC) effectively rescued SHMT2 deficiency-induced cell apoptosis via the intrinsic signaling pathway. Treatment with the SHMT inhibitor SHIN1 resulted in a significant inhibitory effect on cell proliferation and induced cell apoptosis. Formate and NAC rescued SHIN1-induced cell apoptosis. Our findings reveal an important mechanism by which the loss of SHMT2 triggers ROS-dependent, mitochondrial-mediated apoptosis, which gives insight into the link between serine metabolism and cell apoptosis and provides a promising target for BC treatment and drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41417-022-00470-5DOI Listing

Publication Analysis

Top Keywords

cell apoptosis
20
cancer cells
12
one-carbon units
12
cell
10
shmt2
9
ros-dependent mitochondrial-mediated
8
apoptosis
8
mitochondrial-mediated apoptosis
8
apoptosis intrinsic
8
intrinsic signaling
8

Similar Publications

Clinical diagnostic value and potential regulatory mechanisms of lncRNA NOP14-AS1 in chronic kidney disease.

Nucleosides Nucleotides Nucleic Acids

January 2025

Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.

In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups.

View Article and Find Full Text PDF

Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@FeO NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@FeO NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!