High resolution and high intensity neutron powder diffraction is used to study the ground state magnetic order and the spin reorientation transition in the orthoferrite DyFeO. The transition from the high temperature= 0 Γ() to the low temperature Γ() type order of the Fe-sublattice is found at= 73 K and does not show any thermal hysteresis. Below= 4 K the Dy-sublattice orders in an incommensurate magnetic structure with= [0, 0, 0.028] while the Fe-sublattice keeps its commensurate Γtype order. DyFeOis the first orthoferriteFeOto possess an incommensurate magnetic order of the rare earth sublattice under zero field conditions; an important piece of information neglected in the recent discussion of its multiferroic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac6787 | DOI Listing |
Adv Mater
December 2024
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.
Because of the lack of translational symmetry, calculating the energy spectrum of an incommensurate system has always been a theoretical challenge. Here, we propose a natural approach to generalize energy band theory to incommensurate systems without reliance on the commensurate approximation, thus providing a comprehensive energy spectrum theory of incommensurate systems. Except for a truncation-dependent weighting factor, the formulae of this theory are formally almost identical to that of Bloch electrons, making it particularly suitable for complex incommensurate structures.
View Article and Find Full Text PDFNano Lett
December 2024
Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.
In research on mesoscale structure and correlations, small-angle neutron scattering (SANS) is increasingly being employed to map fully three-dimensional distributions of scattered intensity at low momentum transfer. While traditionally SANS experiments and data analysis methods are designed to prioritize the determination of salient information in only one or two dimensions, the trend towards volumetric intensity mapping experiments calls for new software tools to assist with analyzing the resulting datasets. In this paper, we describe the development of a new software module, the ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!