Thermochemical ablation (TCA) is a thermal ablation therapy that utilises heat released from acid-base neutralisation reaction to destroy tumours. This procedure is a promising low-cost solution to existing thermal ablation treatments such as radiofrequency ablation (RFA) and microwave ablation (MWA). Studies have demonstrated that TCA can produce thermal damage that is on par with RFA and MWA when employed properly. Nevertheless, TCA remains a concept that is tested only in a few animal trials due to the risks involved as the result of uncontrolled infusion and incomplete acid-base reaction. In this study, a computational framework that simulates the thermochemical process of TCA is developed. The proposed framework consists of three physics, namely chemical flow, neutralisation reaction and heat transfer. An important parameter in the TCA framework is the neutralisation reaction rate constant, which has values in the order of 10 m/(mol⋅s). The present study will demonstrate that since the rate constant impacts only the rate and direction of the reaction but has little influence on the extent of reaction, it is possible to replicate the thermochemical process of TCA by employing significantly smaller values of rate constant that are numerically tractable. Comparisons of the numerical results against experimental studies from the literature supports this. The aim of this framework is for researchers to advance and develop TCA to gain an in-depth understanding of the fundamental mechanisms of TCA and to develop a safe treatment protocol of TCA in the hope of advancing TCA into clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.105494 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York 11201, United States.
Electrosynthesis at an industrial scale offers an opportunity to use renewable electricity in chemical manufacturing, accelerating the decarbonization of large-scale chemical processes. Organic electrosynthesis can improve product selectivity, reduce reaction steps, and minimize waste byproducts. Electrochemical synthesis of adiponitrile (ADN) via hydrodimerization of acrylonitrile (AN) is a prominent example of industrial organic electrochemical processes, with annual production reaching 0.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
In microfluidic chips, glass free-form microchannels have obvious advantages in thermochemical stability and biocompatibility compared to polymer-based channels, but they face challenges in processing morphology and quality. Hence, picosecond laser etching with galvanometer scanning is proposed to machine spiral microfluidic channels on a glass substrate. The objective is to disperse and sort microparticles from a glass microchip that is difficult to cut.
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.
This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
DENS-ia Research Group, Faculty of Health Sciences, Miguel de Cervantes European University, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain.
Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment).
View Article and Find Full Text PDFEntropy (Basel)
January 2025
College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
The co-gasification of biomass and plastic waste offers a promising solution for producing hydrogen-rich syngas, addressing the rising demand for cleaner energy. However, optimizing this complex process to maximize hydrogen yield remains challenging, particularly when balancing diverse feedstocks and improving process efficiency. While machine learning (ML) has shown significant potential in simulating and optimizing such processes, there is no clear consensus on the most effective regression models for co-gasification, especially with limited experimental data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!