Facile fabrication of hypercrosslinked microporous polymer nanospheres for effective inhibition of triple negative breast cancer cells proliferation.

J Colloid Interface Sci

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan 430074, China. Electronic address:

Published: August 2022

Treatment failure is one of the main lethal causes of human triple negative breast cancer (TNBC) patients due to inefficient drug administration. The present study demonstrated the development of functional microporous organic polymers (MOPs) as a potential drug carrier and its controlled release. Due to the existence of abundant pores and high surface area, MOPs have promoted the high drug payloads, facilitating prolonged retention time and improved drug release. Herein, porous organic polymer has been fabricated via knitting strategy using the carbonyl bridged external crosslinker. Utilizing the imine chemistry, post-functionalization at the bridging carbon with the diamine resulted in the functional porous framework which had been further modified with single stranded DNA (ssDNA). Due to the conjugated structure, the designed material incorporates the strong blue fluorescence that assists in bio-imaging. In short, the inherent features of hypercrosslinked microporous polymers nanospheres (HMPNs) enabled the high encapsulation of Epirubicin (EPI) and its controlled release in TNBC cell lines (SUM-159 and MDA-MB-231) to inhibit cancer cells proliferation. We anticipate that the further development in functionalization of hypercrosslinked polymers may lead to a breakthrough in biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.03.109DOI Listing

Publication Analysis

Top Keywords

hypercrosslinked microporous
8
triple negative
8
negative breast
8
breast cancer
8
cancer cells
8
cells proliferation
8
controlled release
8
facile fabrication
4
fabrication hypercrosslinked
4
microporous polymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!