The mild electrolyte working environment of rechargeable aqueous Zn-ion batteries (AZIBs) features its promising characteristic and potential application for large-scale energy storage system. However, the poor cycling stability significantly hinders the broad application of AZIBs due to the complex electrochemical conversion reactions during charge-discharge process. Herein, we propose a strategy to improve the electrochemical performance of AZIB by enhancing the successive electrochemical conversion reactions. With a rational design of electrode, an even homogeneous electric field can be achieved in the cathode side, resulting to significantly enhanced efficiency of successive electrochemical conversion reactions. Charge storage mechanism studies reveal that the reversibility behaviors of byproducts alkaline zinc sulfate (ZHS) can dramatically determine the H/Zn de/intercalation process, and a high reversibility characteristic ensures the facilitated electrochemical kinetics. As expected, the resultant AZIB possesses outstanding electrochemical performance with a high specific capacity of 425.08 mAh⋅g at 0.1 A⋅g, an excellent rate capacity of about 60% (246.6 mAh⋅g at 1 A⋅g) and superior cycling stability of 93.7% after 3000 cycles (at 3 A⋅g). This effective strategy and thinking proposed here may open a new avenue for the development of high-performing AZIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.04.004 | DOI Listing |
Small
January 2025
Institute for Sustainable Energy and Resources, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China.
Alkaline water (HO) electrolysis is currently a commercialized green hydrogen (H) production technology, yet the unsatisfactory hydrogen evolution reaction (HER) performance severely limits its energy conversion efficiency and cost reduction. Herein, PtRuFeCoNi high entropy alloys (HEAs) is synthesized and subsequently exploited electrochemically induced structural oxidation processes to construct self-reconfigurable HEAs, as an efficient alkaline HER catalyst. The optimized self-reconstructed PtRuFeCoNi HEAs with the HEAs and cobalt rutheniate interface (HEAs-CoRuO) exhibits excellent alkaline HER performance, requiring just 11.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, State Key Laboratory of Engines, CHINA.
Improving the alkaline hydrogen evolution reaction (HER) efficiency is essential for developing advanced anion exchange membrane water electrolyzers (AEMWEs) that operate at industrial ampere-level currents. Herein, we employ density functional theory (DFT) calculations to identify Ni-RuO2 as the leading candidate among various 3d transition metal-doped M-RuO2 (where metal M includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). The incorporation of Ni atoms facilitates the partial reduction of RuO2, resulting in the formation of a Ni-Ru/RuO2 interface having a significant built-in electric field (BIEF) during electrochemical reactions.
View Article and Find Full Text PDFNat Commun
January 2025
The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, Sweden.
The attainment of white emission from a light-emitting electrochemical cell (LEC) is important, since it enables illumination and facile color conversion from devices that can be cost-efficient and sustainable. However, a drawback with current white LECs is that they either employ non-sustainable metals as an emitter constituent or are intrinsically efficiency limited by that the emitter only converts singlet excitons to photons. Organic compounds that emit by thermally activated delayed fluorescence (TADF) can address these issues since they can harvest all excitons for light emission while being metal free.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.
Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!