Collagen type IV (COL IV) is a major component of basement membranes (BM) in all organs. It serves functions related to BM organization and modulates the passage of growth factors from one tissue compartment to another. COL IV binds transforming growth factor (TGF) beta-1 and TGF beta-2 and, therefore, is a major modulator of TGF beta pro-fibrotic functions. After fibrotic corneal injury, TGF beta enters into the stroma from the tears, epithelium, endothelium and/or aqueous humor and markedly upregulates COL IV production in corneal fibroblasts in the adjacent stroma far removed from BMs. It is hypothesized this non-BM stromal COL IV binds TGF beta-1 (and likely TGF beta-2) in competition with the binding of the growth factors to TGF beta cognate receptors and serves as a negative feedback regulatory pathway to mitigate the effects of TGF beta on stromal cells, including reducing the developmental transition of corneal fibroblasts and fibrocytes into myofibroblasts. Losartan, a known TGF beta signaling inhibitor, when applied topically to the cornea after fibrotic injury, alters this COL IV-TGF beta pathway by down-regulating COL IV production by corneal fibroblasts. Non-BM COL IV produced in response to injuries in other organs, including the lung, skin, liver, kidney, and gut, may participate in similar COL IV-TGF beta pathways and have an important role in controlling TGF beta pro-fibrotic effects in these organs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2022.04.002DOI Listing

Publication Analysis

Top Keywords

tgf beta
28
corneal fibroblasts
12
tgf
11
beta
9
collagen type
8
negative feedback
8
col
8
growth factors
8
col binds
8
tgf beta-1
8

Similar Publications

Decorin-mediated dermal papilla cell-derived exosomes regulate hair follicle growth and development through miR-129-2-3p/SMAD3/TGF-β axis.

Int J Biol Macromol

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:

Decorin (DCN) is a member of the small leucine-rich proteoglycan family within the extracellular matrix, playing a role in the growth and development of hair follicle (HF). Exosomes serve as significant mediators of intercellular communication and are involved in the cyclic regeneration of HF. Exosomes derived from dermal papilla cells (DPC-Exos) are essential for the cycling and regrowth of HF.

View Article and Find Full Text PDF

EVALUATION OF THE EFFECTS OF FAVIPIRAVIR (T-705) ON THE LUNG TISSUE OF HEALTY RATS: AN EXPERIMENTAL STUDY.

Food Chem Toxicol

January 2025

Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039 Kayseri, Turkey. Electronic address:

Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor widely used during the COVID-19 pandemic, effectively reduces viral load but has been linked to inflammatory changes in tissues such as the liver and kidneys. High-dose and prolonged use of favipiravir for COVID-19 raises concerns about its potential toxic effects on the lungs, particularly in patients with pre-existing pulmonary conditions. This study investigated favipiravir's effects on lung tissue in healthy rats.

View Article and Find Full Text PDF

Epigenetic modification regulates the ligamentum flavum hypertrophy through miR-335-3p/SERPINE2/β-catenin signaling pathway.

Cell Mol Biol Lett

January 2025

Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.

Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.

Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml).

View Article and Find Full Text PDF

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!