First record of plastiglomerates, pyroplastics, and plasticrusts in South America.

Sci Total Environ

Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.

Published: August 2022

AI Article Synopsis

  • Beaches are heavily polluted by plastic, prompting new classifications of plastic formations like plastiglomerates, plasticrusts, and pyroplastics.
  • The study documented the presence of these formations in Peru, linking them to illegal litter burning and campfires on local beaches.
  • Analysis confirmed the materials and suggested a potential new formation pathway through plastic burning, highlighting the need for further research on plastic pollution's impacts.

Article Abstract

Beaches in the Anthropocene carry the heavy burden of human-derived pollution, like that induced by plastic litter. For decades, plastic debris has been classified based on its source or physical size. In recent years, studies described and documented new forms of plastic formations, including plastiglomerates, plasticrusts, and pyroplastics. However, reports of these newly described formations are substantially lacking. Therefore, in the present study, we reported the first evidence of plasticrusts (plastic encrusting rock surfaces), plastiglomerates (organic/inorganic composite materials in a plastic matrix), and pyroplastics (burned and weathered plastics) in Peru. The plastic pollutants were recovered from the field through marine litter surveys on four beaches where illegal litter burning and campfires take place. All the suspected plastic formations were analyzed and confirmed using Fourier transformed infrared (FTIR) spectroscopy, and one of each type was analyzed by X-Ray fluorescence (EDX) spectrometry. Plastiglomerates consisted of a high-density polyethylene (HDPE) or polypropylene (PP) matrix with rock and sand inclusions. Pyroplastics were found in various stages of weathering and consisted of various polymers, including HDPE, PP, polyethylene terephthalate (PET), and polyamide (PA). Interestingly, our field observations suggest a new plasticrust formation pathway based on plastic burning and filling of rock crevices with molten plastic. The latter was identified as either PP or HDPE. Elements typically found in the sand and seawater (e.g., Na, Cl, Ca, Si, Fe) were identified on the surface of the plastic formations, as well as others that could potentially be associated with the leaching of additives (e.g., Ti, Br). Although the present study contributed to the knowledge concerning the occurrence of the new types of plastic formations, as well as possible formation pathways, there are still many questions to answer. Hence, we encourage future studies to focus on the toxicity that new plastic formations may induce in contrast with conventional plastics, the release of secondary contaminants (e.g., microplastics, additives), and their degradation in the environment. Lastly, standardized sampling and data treatment protocols are required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.155179DOI Listing

Publication Analysis

Top Keywords

plastic formations
20
plastic
12
formations well
8
formations
6
record plastiglomerates
4
pyroplastics
4
plastiglomerates pyroplastics
4
pyroplastics plasticrusts
4
plasticrusts south
4
south america
4

Similar Publications

Plastic responses to past environments shape adaptation to novel selection pressures.

Proc Natl Acad Sci U S A

February 2025

Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom.

Phenotypic plasticity may pave the way for rapid adaptation to newly encountered environments. Although it is often contested, there is growing evidence that initial plastic responses of ancestral populations to new environmental cues may promote subsequent adaptation. However, we do not know whether plasticity to cues present in the ancestral habitat (past-cue plasticity) can facilitate adaptation to novel cues.

View Article and Find Full Text PDF

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.

View Article and Find Full Text PDF

The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks.

View Article and Find Full Text PDF

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) are bioplastics produced by few bacteria as intracellular lipid inclusions under excess carbon source and nutrient-deprived conditions. These polymers are biodegradable and resemble petroleum-based plastics. The rising environmental concerns have increased the demand for PHA, but the low yield in wild-type bacterial strains limits large-scale production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!