Background: This research sought to explore the effects of Tanshinone IIA (TIIA) and its potential mechanism in sepsis-induced acute lung injury.
Methods: Cecal ligation and puncture (CLP) was performed to construct a sepsis model in vivo. RLE-6TN cells were treated with lipopolysaccharide (LPS) to establish a sepsis model for in vitro experiments. The histopathological changes of the lung tissues were scored using HE staining, IHC, and dry and wet method. Apoptosis in the lung tissues was detected by TUNEL assay. Meanwhile, ELISA was used to determine the levels of the pro-inflammatory factors. Cell proliferation and apoptosis were evaluated using CCK-8, EdU assays and flow cytometry, respectively. RT-qPCR analysis was carried out to measure the expression of Rho associated coiled-coil containing protein kinase 2 (ROCK2).
Results: TIIA dramatically alleviated the pathological injuries of the lung, and relieved apoptosis, neutrophil infiltration, lung edema and inflammation response. Highly expressed ROCK2 was observed in septic rats in vivo and LPS-induced RLE-6TN cells in vitro. We found that ROCK2 knockdown promoted cell proliferation, and inhibited cell apoptosis and inflammation in LPS-treated RLE-6TN cells. Moreover, TIIA improved LPS-caused injury in RLE-6TN cells through downregulating ROCK2 expression. Mechanistically, TIIA repressed LPS-caused activation of the NF-κB pathway by regulating ROCK2 in RLE-6TN cells. Additionally, TIIA assuaged CLP-induced lung injury in the rats via downregulating ROCK2 to inactivate the NF-κB pathway in vivo.
Conclusion: Our data demonstrated that TIIA improved sepsis-induced lung injury by downregulating ROCK2 and further inactivating the NF-κB signaling pathway in vivo and in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2022.116021 | DOI Listing |
Intensive Care Med Exp
January 2025
Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China. Electronic address:
Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of silicosis. High mobility group box 1 (HMGB1) has been found to induce EMT in fibrotic diseases. Previous studies have revealed a critical role of HMGB1 in silicosis, whereas the detail mechanisms still obscure.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.
Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.
Cell Mol Life Sci
October 2024
Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing.
View Article and Find Full Text PDFOpen Life Sci
August 2024
Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China.
Sepsis-induced acute lung injury is associated with lung epithelial cell injury. This study analyzed the role of the antimicrobial peptide LL37 with mitochondrial DNA (LL37-mtDNA) and its potential mechanism of action in lipopolysaccharide (LPS)-treated rat type II alveolar epithelial cells (RLE-6TN cells). RLE-6TN cells were treated with LPS alone or with LL37-mtDNA, followed by transcriptome sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!