Background: This research sought to explore the effects of Tanshinone IIA (TIIA) and its potential mechanism in sepsis-induced acute lung injury.

Methods: Cecal ligation and puncture (CLP) was performed to construct a sepsis model in vivo. RLE-6TN cells were treated with lipopolysaccharide (LPS) to establish a sepsis model for in vitro experiments. The histopathological changes of the lung tissues were scored using HE staining, IHC, and dry and wet method. Apoptosis in the lung tissues was detected by TUNEL assay. Meanwhile, ELISA was used to determine the levels of the pro-inflammatory factors. Cell proliferation and apoptosis were evaluated using CCK-8, EdU assays and flow cytometry, respectively. RT-qPCR analysis was carried out to measure the expression of Rho associated coiled-coil containing protein kinase 2 (ROCK2).

Results: TIIA dramatically alleviated the pathological injuries of the lung, and relieved apoptosis, neutrophil infiltration, lung edema and inflammation response. Highly expressed ROCK2 was observed in septic rats in vivo and LPS-induced RLE-6TN cells in vitro. We found that ROCK2 knockdown promoted cell proliferation, and inhibited cell apoptosis and inflammation in LPS-treated RLE-6TN cells. Moreover, TIIA improved LPS-caused injury in RLE-6TN cells through downregulating ROCK2 expression. Mechanistically, TIIA repressed LPS-caused activation of the NF-κB pathway by regulating ROCK2 in RLE-6TN cells. Additionally, TIIA assuaged CLP-induced lung injury in the rats via downregulating ROCK2 to inactivate the NF-κB pathway in vivo.

Conclusion: Our data demonstrated that TIIA improved sepsis-induced lung injury by downregulating ROCK2 and further inactivating the NF-κB signaling pathway in vivo and in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2022.116021DOI Listing

Publication Analysis

Top Keywords

rle-6tn cells
20
lung injury
12
downregulating rock2
12
tanshinone iia
8
sepsis-induced acute
8
lung
8
acute lung
8
sepsis model
8
lung tissues
8
cell proliferation
8

Similar Publications

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

HMGB1 mediates epithelial-mesenchymal transition and fibrosis in silicosis via RAGE/β-catenin signaling.

Chem Biol Interact

January 2025

Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China. Electronic address:

Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of silicosis. High mobility group box 1 (HMGB1) has been found to induce EMT in fibrotic diseases. Previous studies have revealed a critical role of HMGB1 in silicosis, whereas the detail mechanisms still obscure.

View Article and Find Full Text PDF

Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.

Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.

View Article and Find Full Text PDF

In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing.

View Article and Find Full Text PDF

LL37-mtDNA regulates viability, apoptosis, inflammation, and autophagy in lipopolysaccharide-treated RLE-6TN cells by targeting Hsp90aa1.

Open Life Sci

August 2024

Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China.

Sepsis-induced acute lung injury is associated with lung epithelial cell injury. This study analyzed the role of the antimicrobial peptide LL37 with mitochondrial DNA (LL37-mtDNA) and its potential mechanism of action in lipopolysaccharide (LPS)-treated rat type II alveolar epithelial cells (RLE-6TN cells). RLE-6TN cells were treated with LPS alone or with LL37-mtDNA, followed by transcriptome sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!