Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis.

Eur J Pharmacol

Department of Neurology, The Second Affiliated Hospital of Nanchang, Nanchang, 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang, 330006, Jiangxi Province, PR China. Electronic address:

Published: July 2022

Background: It is reported that the osteogenesis in bone marrow mesenchymal stem cells (BMSCs) can alleviate osteoporosis progression. It has been found that Kae can promote the osteogenesis in BMSCs. However, the mechanism by which Kae mediates the osteogenesis in BMSCs is largely unknown.

Methods: RBMSCs were collected from rats. The cytotoxicity of Kae was detected by CCK-8 assay. The osteogenic calcification in rBMSCs was measured by alizarin red staining, and ALP staining was performed to test the ALP activity in rBMSCs. The binding relationship between SOX2 and miR-124-3p was explored by dual luciferase report assay and Chromatin Immunoprecipitation (ChIP). RT-qPCR and western blot were performed to assess mRNA and protein levels, respectively.

Results: Kae (10 μM) significantly increased the calcification, ALP activity, SOX2 level, activated PI3K/Akt/mTOR signaling and inhibited miR-124-3p level in rBMSCs, while knockdown of SOX2 reversed this phenomenon. Meanwhile, SOX2 suppressed the transcription of miR-124-3p, and SOX2 promoted the osteogenic differentiation in rBMSCs via regulation of miR-124-3p. MiR-124-3p could inactivate PI3K/Akt/mTOR to inhibit the osteogenic differentiation.

Conclusion: Kae significantly promoted the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Thus, our study might shed new lights in exploring new methods against osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2022.174954DOI Listing

Publication Analysis

Top Keywords

osteogenesis rbmscs
8
rbmscs mediation
8
mediation sox2/mir-124-3p/pi3k/akt/mtor
8
sox2/mir-124-3p/pi3k/akt/mtor axis
8
osteogenesis bmscs
8
alp activity
8
rbmscs
7
osteogenesis
5
kae
5
sox2
5

Similar Publications

Vascularized bone tissue engineering for osteogenesis is considered a key approach for the repair of critical bone defects. Icariin(ICA) has been employed in bone tissue engineering for osteogenesis in several studies, demonstrating significant angiogenic and osteogenic effects in vivo in rat models. However, the in vivo angiogenic and osteogenic effects of Icariside II (ICSII), a gastrointestinal metabolite of ICA, remain unclear.

View Article and Find Full Text PDF

Introduction: Head and neck squamous cell carcinoma (HNSCC) frequently invades the jaw, and surgical treatment often leads to bone defects requiring reconstruction with titanium plates. To enhance the anti-tumor and bone regeneration properties of titanium, a selenium-modified hydroxyapatite coating was developed on titanium surfaces.

Methods: Selenium-modified hydroxyapatite coatings was fabricated using micro-arc oxidation (MAO).

View Article and Find Full Text PDF

Aqueous extract of Rehmanniae Radix Praeparata improves bone health in ovariectomized rats by modulating the miR-29a-3p/NFIA/Wnt signaling pathway axis.

J Ethnopharmacol

March 2025

College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, 510630, PR China. Electronic address:

Ethnopharmacological Relevance: Rehmanniae Radix Praeparata (RRP), a widely used traditional Chinese medicine and a processed form of Rehmannia glutinosa, is primarily utilized to supplement kidney function and promote bone health. Clinical evidence suggests that RRP exhibits significant efficacy in the treatment of osteoporosis (OP). However, the precise mechanisms underlying its therapeutic effects remain incompletely understood.

View Article and Find Full Text PDF

Three-Dimensional Printed Cell-Adaptable Nanocolloidal Hydrogel Induces Endogenous Osteogenesis for Bone Repair.

Biomater Res

February 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Repairing critical bone defects remains a formidable challenge in regenerative medicine. Scaffolds that can fill defects and facilitate bone regeneration have garnered considerable attention. However, scaffolds struggle to provide an ideal microenvironment for cell growth and differentiation at the interior of the bone defect sites.

View Article and Find Full Text PDF

Icariin (ICA) serves as the primary biologically active compound in traditional Chinese medicine Epimedium, while Icariside II (ICSII) represents one of its gastrointestinal metabolites. Although ICA and ICSII have demonstrated osteogenic differentiation- promoting effects on BMSCs, there is limited literature comparing their effects and underlying mechanisms. This study aimed to compare the osteogenic effects of Icariin and Icariside II, along with their respective osteogenic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!