Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a bacterial pathogen of maize.

Cell Host Microbe

Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA. Electronic address:

Published: April 2022

AI Article Synopsis

  • Plant pathogens manipulate their hosts to create favorable conditions for growth, which includes weakening the host's immune response and enhancing resource availability.
  • This study focuses on the bacterial pathogen Pantoea stewartii subsp. stewartii (Pnss) and reveals that it accumulates water and metabolites in the early stage of infection before damaging the host cells.
  • The research identifies that this nutrient acquisition is facilitated by a specific effector, WtsE, suggesting that actively obtaining resources is crucial for the growth of certain plant pathogens during the biotrophic phase of infection.

Article Abstract

Plant pathogens perturb their hosts to create environments suitable for their proliferation, including the suppression of immunity and promotion of water and nutrient availability. Although necrotrophs obtain water and nutrients by disrupting host-cell integrity, it is unknown whether hemibiotrophs, such as the bacterial pathogen Pantoea stewartii subsp. stewartii (Pnss), actively liberate water and nutrients during the early, biotrophic phase of infection. Here, we show that water and metabolite accumulation in the apoplast of Pnss-infected maize leaves precedes the disruption of host-cell integrity. Nutrient acquisition during this biotrophic phase is a dynamic process; the partitioning of metabolites into the apoplast rate limiting for their assimilation by proliferating Pnss cells. The formation of a hydrated and nutritive apoplast is driven by an AvrE-family type III effector, WtsE. Given the broad distribution of AvrE-family effectors, this work highlights the importance of actively acquiring water and nutrients for the proliferation of phytopathogenic bacteria during biotrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2022.03.017DOI Listing

Publication Analysis

Top Keywords

water nutrients
12
nutrient acquisition
8
bacterial pathogen
8
host-cell integrity
8
biotrophic phase
8
water
5
dynamic nutrient
4
acquisition hydrated
4
apoplast
4
hydrated apoplast
4

Similar Publications

Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.

View Article and Find Full Text PDF

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

A Chromatography Test Strip of Exonuclease III-Amplified Aptamer for Rapid Identification of Prorocentrum minimum.

Mar Biotechnol (NY)

January 2025

School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.

Recently, the scale and frequency of harmful algae blooms (HABs) have gradually increased, posing a serious threat to human health, marine ecosystems and economic development. For early warning, a method is required that can quickly detect and monitor microalgae. It is proposed to use aptamer targeted to Prorocentrum minimum, along with exonuclease III (Exo III), gold nanoparticles, target single-stranded DNA and hairpin structure probe to construct a new method, i.

View Article and Find Full Text PDF

Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.

View Article and Find Full Text PDF

Biological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!