There is significant regulatory and economic need to distinguish analytically between tobacco-derived nicotine (TDN) and synthetic nicotine (SyN) in commercial products. Currently, commercial e-liquid and oral pouch products are available that contain tobacco-free nicotine, which could be either extracted from tobacco or synthesized. While tobacco products that contain TDN are regulated by FDA Center for Tobacco Products, those with SyN are currently not in the domain of any regulatory authority. This regulatory difference provides an economic incentive to use or claim the use of SyN to remain on the market without submitting a Premarket Tobacco Product Application. TDN is ~99.3% (S)-nicotine, whereas SyN can vary from racemic (50/50 (R)/(S)) to ≥ 99% (S)-nicotine, i.e., chemically identical to the tobacco-derived compound. Here we report efforts to distinguish between TDN and SyN in various samples by characterizing impurities, (R)/(S)-nicotine enantiomer ratio, (R)/(S)-nornicotine enantiomer ratio, and carbon-14 (14C) content. Only 14C analysis accurately and precisely differentiated TDN (100% 14C) from SyN (35-38% 14C) in all samples tested. 14C quantitation of nicotine samples by accelerator mass spectrometry is a reliable determinate of nicotine source and can be used to identify misbranded product labelled as containing SyN. This is the first report to distinguish natural, bio-based nicotine from synthetic, petroleum-based nicotine across a range of pure nicotine samples and commercial e-liquid products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009602 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267049 | PLOS |
Phytother Res
January 2025
Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei.
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately.
View Article and Find Full Text PDFToxics
January 2025
École de Psychoéducation, Université de Montréal, Montréal, QC H3C 3J7, Canada.
Secondhand smoke affects nearly 40% of children worldwide, leading to serious health and behavioral problems. Being neurotoxic, it poses potential risks for child health and learning. In Cuba, there is limited research on the association of secondhand smoke with children's brain health, especially in vulnerable populations like young children at home.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Kiel, Germany.
Introduction: Several aspects of the involvement of HPV in the pathogenesis of HPV-associated diseases remain poorly understood including mechanistic aspects of infection and the question of why the majority of HPV-positive HNSCC-patients are non-smokers, whereas HPV-negatives are smokers. Our previous research, based on 1,100 patient samples, hypothesized an explanation for this phenomenon: Smoking induces upregulation of a mucosal protective protein (SLPI), which competes with HPV for binding to Annexin A2 (AnxA2), pivotal for HPV cell entry. Here we investigate the mechanistic aspects of our hypothesis using transfection assays.
View Article and Find Full Text PDFFront Microbiol
January 2025
Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
Background: Perinatal nicotine exposure (PNE) induces pulmonary dysplasia in offspring and it increases the risk of respiratory diseases both in offspring and across generations. The maternal gut microbiota and its metabolites, such as short-chain fatty acids (SCFAs), can regulate fetal lung development and are susceptible to nicotine exposure. Therefore, modulation of PNE-induced changes in maternal gut microbiota and SCFAs may prevent the occurrence of pulmonary dysplasia in offspring.
View Article and Find Full Text PDFHealth Promot Pract
January 2025
Southern Illinois University, Carbondale, IL, USA.
. Stringent regulations restricting tobacco access to those under 21 are in place, yet young people continue accessing tobacco products. This study aimed to assess the knowledge, opinions, resource utilization, and training needs of tobacco retailers in terms of preventing underage tobacco sales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!