A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Network pharmacology and in vitro testing of Theobroma cacao extract's antioxidative activity and its effects on cancer cell survival. | LitMetric

Theobroma cacao L. is a commercially important food/beverage and is used as traditional medicine worldwide against a variety of ailments. In the present study, computational biology approaches were implemented to elucidate the possible role of cocoa in cancer therapy. Bioactives of cocoa were retrieved from the PubChem database and queried for targets involved in cancer pathogenesis using BindingDB (similarity index ≥0.7). Later, the protein-protein interactions network was investigated using STRING and compound-protein via Cytoscape. In addition, intermolecular interactions were investigated via molecular docking. Also, the stability of the representative complex Hirsutrin-epidermal growth factor receptor (EGFR) complex was explored using molecular dynamics simulations. Crude extract metabolite profile was carried out by LC-MS. Further, anti-oxidant and cytotoxicity studies were performed in Chinese hamster ovary (normal) and Ehrlich ascites carcinoma (cancer) cell lines. Herein, the gene set enrichment and network analysis revealed 34 bioactives in cocoa targeting 50 proteins regulating 21 pathways involved in cancer and oxidative stress in humans. EGFR scored the highest edge count amongst 50 targets modulating 21 key pathways. Hence, it was selected as a promising anticancer target in this study. Structural refinement of EGFR was performed via all-atom molecular dynamics simulations in explicit solvent. A complex EGFR-Hirsutrin showed the least binding energy (-7.2 kcal/mol) and conserved non-bonded contacts with binding pocket residues. A stable complex formation of EGFR-Hirsutrin was observed during 100 ns MD simulation. In vitro studies corroborated antioxidant activity for cocoa extract and showed a significantly higher cytotoxic effect on cancer cells compared to normal cells. Our study virtually predicts anti-cancer activity for cocoa affected by hirsutrin inhibiting EGFR. Further wet-lab studies are needed to establish cocoa extract against cancer and oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009696PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259757PLOS

Publication Analysis

Top Keywords

theobroma cacao
8
cancer cell
8
bioactives cocoa
8
involved cancer
8
molecular dynamics
8
dynamics simulations
8
cancer oxidative
8
oxidative stress
8
activity cocoa
8
cocoa extract
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!