A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating both directed and undirected contemporaneous relations in time series data using hybrid-group iterative multiple model estimation. | LitMetric

AI Article Synopsis

  • Researchers are increasingly using intensive longitudinal data to analyze individual-level processes over time, focusing on lagged and contemporaneous relations.
  • Lagged relations explain how past variables impact future ones, typically modeled with vector autoregression, while contemporaneous relations show how variables interact in real-time with potential modeling biases.
  • The article introduces a new method called hybrid-group iterative multiple model estimation (GIMME), which allows for examining both types of contemporaneous relations alongside lagged relations, proving effective in tests with both simulated and real-world data.

Article Abstract

Researchers across varied fields increasingly are collecting and analyzing intensive longitudinal data (ILD) to examine processes across time at the individual level. Two types of relations are typically examined: lagged and contemporaneous. Lagged relations capture how variables at a prior time point can be used to explain variance in variables at a later time point. These are always modeled using auto- and cross-regressions by means of vector autoregression (VAR). By contrast, there are two types of relations commonly used to model the contemporaneous relations, which model how variables relate instantaneously. Until now, researchers must opt to either model contemporaneous relations as undirected relations among residuals (e.g., partial or full correlations) or as directed relations among the variables (e.g., paths or regressions). The choice for how to model contemporaneous relations has implications for inferences as well as the potential to introduce bias in the VAR lagged relations if the wrong type of relation is used. This article introduces a novel data-driven method, hybrid-group iterative multiple model estimation (GIMME), that provides a solution to the problem of having to choose one or the other type of contemporaneous relation to model. The modeling framework utilized in hybrid-GIMME allows for both types of contemporaneous relations in addition to the standard VAR relations. Both simulated and empirical data were used to test the performance of hybrid-GIMME. Results suggest this is a robust method for recovering contemporaneous relations in an exploratory manner, particularly with an ample number of time points per person. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/met0000485DOI Listing

Publication Analysis

Top Keywords

contemporaneous relations
24
relations
13
model contemporaneous
12
contemporaneous
8
hybrid-group iterative
8
iterative multiple
8
multiple model
8
model estimation
8
types relations
8
lagged relations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!