Mechanospray ionization (MoSI) is a technique that produces ions directly from solution-like electrospray ionization (ESI) but without the need of a high voltage. In MoSI, mechanical vibrations aerosolize solution phase analytes, whereby the resulting microdroplets can be directed into the inlet orifice of a mass spectrometer. In this work, MoSI is applied to biomolecules up to 80 kDa in mass in both denatured and native conditions as well as polymers up to 12 kDa in mass. The various MoSI devices used in these analyses were all comprised of a piezoelectric annulus attached to a central metallic disk containing an array of 4 to 7 μm diameter holes. The devices vibrated in the 100-170 kHz range to generate a beam of microdroplets that ultimately resulted in ion formation. A linear quadrupole ion trap (LIT) and orbitrap mass spectrometer were used in the analysis to investigate higher mass proteins at both native (folded) and denatured (unfolded) conditions. MoSI native mass spectra of proteins acquired on the orbitrap and LIT instrument demonstrated that proteins could remain intact and in a folded state. In the case of native MS of holomyoglobin, the intact folded protein remained mostly bound noncovalently to the heme group, and typically, the spectra showed reduced loss of the heme group by MoSI as compared to ESI. In both non-native and native protein analyses examples, broader often multimodal distributions to lower charge states were observed. When using the LIT instrument, a significant increase in the relative abundance of dimers was observed by MoSI as compared to ESI. The softness of the MoSI technique was evidenced by the lack of fragmentation, the formation of dimers as also noted by others ( 2016, 424-429) and under native conditions, the retention of proteins in one or more presumed folded structures and for holomyoglobin the high retention of the heme group. When analyzing polyethylene glycol (PEG) and polypropylene glycol (PPG), MoSI also generated a broader distribution to lower charge states than ESI. By using the improved separation of peaks at lower charge states and all the charge states available, MoSI data should provide an improved ionization method to obtain more accurate mass and dispersity values for some polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.1c00344 | DOI Listing |
J Phys Chem Lett
January 2025
College of Physics Science and Technology, Hebei University, Baoding 071002, China.
Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (SbSe) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free SbSe solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in SbSe/CdS heterojunction and SbSe/Cd-free ETL heterojunction for development of a Cd-free SbSe solar cell with high PCE.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
America's Physician Groups, Washington, DC.
Importance: Many physician groups are in 2-sided risk payment arrangements with Medicare Advantage plans (at-risk MA). Analysis of quality and health resource use under such arrangements may inform ongoing Medicare policy concerning payment and service delivery.
Objective: To compare quality and efficiency measures under 2 payment models: at-risk MA and fee-for-service (FFS) MA.
Cell Mol Life Sci
January 2025
School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
C1orf115 has been identified in high-throughput screens as a regulator of multidrug resistance possibly mediated through an interaction with ATP-dependent membrane transporter ABCB1. Here we show that C1orf115 not only shares structural similarities with FACI/C11orf86 to interact with clathrin adaptors to undergo endocytosis, but also induces ABCA1 transcription to promote cholesterol efflux. C1orf115 consists of an N-terminal intrinsically disordered region and a C-terminal α-helix.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Thin film Energy Storage Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203Tamil Nadu India.
Manganese oxides are a promising cathode material for aqueous zinc-ion batteries (AZIBs), but thin-film configurations remain underexplored. This study investigates the electrochemical dynamics of 60 nm thin MnO thin films, fabricated via RF magnetron reactive sputtering. It addresses the highest reported capacity (25 mAh/g) in thin film form, stability over 500 cycles, effective performance across varying current rates, surpassing previous studies and challenges such as phase stability, and capacity fading over extended cycling, aiming to enhance uniformity, minimizing diffusion barriers for improved performance.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Nanomaterials, Faculty of Materials Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea.
Significant research efforts have been devoted to improving the efficiency of catalytic carbon monoxide (CO) oxidation over α-FeO-based catalysts, but details of the underlying mechanism are still under debate. Here we apply the thermodynamic method (AITM) within the density functional theory framework to investigate the phase diagram of α-FeO(0001) surfaces with various terminations and the catalytic mechanism of CO oxidation on these surfaces. By extending the conventional AITM to consider the charge state of surface defects, we build the phase diagram of α-FeO(0001) surfaces in relation to the Fermi energy as well as the oxygen chemical potential, which makes it possible to explain the influence of point defects on the surface morphology and to predict the existence of the experimentally observed functional sites such as the ferryl group (FeO) and oxygen vacancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!