In the development of photolabile protecting groups, it is of high interest to selectively modify photochemical properties with structural changes as simple as possible. In this work, knowledge of fluorophore optimization was adopted and used to design new coumarin- based photocages. Photolysis efficiency was selectively modulated by inactivating competitive decay channels, such as twisted intramolecular charge transfer (TICT) or hydrogen-bonding, and the photolytic release of the neurotransmitter serotonin was demonstrated. Structural modifications inspired by the fluorophore ATTO 390 led to a significant increase in the uncaging cross section that can be further improved by the simple addition of a double bond. Ultrafast transient absorption spectroscopy gave insights into the underlying solvent-dependent photophysical dynamics. The chromophores presented here are excellently suited as new photocages in the visible wavelength range due to their simple synthesis and their superior photochemical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320935 | PMC |
http://dx.doi.org/10.1002/chem.202200647 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea.
Understanding plasmon damping in gold nanorods (AuNRs) is crucial for optimizing their use in photochemical processes and biosensing. This study used dark-field microscopy and spectroscopy to explore plasmon damping in single AuNRs on graphene monolayers (AuNR@GL) with pyridine derivatives as adsorbates. The Au-graphene heterostructure caused a Fermi-level downshift, making graphene a dominant electron acceptor.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong S.A.R., 999077, China.
The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS/WS heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Am J Hum Genet
January 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry and Shanghai Key Laboratory of Molecular, Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
Sn redox chemistry in aqueous acidic electrolyte was characterized with high reversibility and kinetics, which is considered as competitive anode material for aqueous batteries. Unfortunately, divalent Sn is unstable in aqueous electrolyte. It was revealed that Sn is easy to be oxidized to tetravalent Sn by dissolved oxygen and then forms precipitate through hydrolysis process, leading to serious performance decay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!