Purpose: Although mast cells (MCs) modulate the activity of effector cells during Candida albicans infection, their role in the pathogenesis of candidiasis remains unclear. Candidalysin, a C. albicans-derived peptide toxin, is a crucial factor in fungal infections. We aimed to investigate the effect of candidalysin on MC activation and the underlying molecular mechanism.
Methods: Serum from candidalysin-immunized mice was used to measure candidalysin expression in patients infected with C. albicans. MC degranulation and migration were evaluated by β-hexosaminidase release assay and chemotaxis assay, respectively. EIA and ELISA were used to evaluate the production of eicosanoids and cytokines/chemokines, respectively. The production of nitric oxide (NO) was measured with a DAF-FM diacetate kit, while reactive oxygen species (ROS) production was analyzed by flow cytometry. MAPK activation was evaluated by Western blotting.
Results: We detected high candidalysin expression in the lesions of patients infected with C. albicans, and the MC number was increased in these lesions. LL-37 colocalized with MCs in the lesions of candidiasis patients. Candidalysin-enhanced MC accumulation in mice and treating LAD2 and HMC-1 cells with candidalysin induced their degranulation, migration, and production of pro- and anti-inflammatory cytokines/chemokines, eicosanoids, ROS, NO, and LL-37. Interestingly, C. albicans strains lacking candidalysin failed to induce MC activation. Moreover, candidalysin increased dectin-1 expression, and the inhibition of dectin-1 decreased MC activation. Downstream dectin-1 signaling involved the MAPK pathways.
Conclusion: The finding that candidalysin causes cutaneous MC activation may improve our understanding of the role of MCs in the pathology of cutaneous C. albicans infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10875-022-01267-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!