Glycolysis-targeted cancer therapy based on long non-coding RNAs (lncRNAs), owing to its high specificity and less toxicity, is at the preclinical stages. Our study aimed to examine the roles of the core glycolysis-associated lncRNAs in bladder cancer (BC). Glycolysis scores of BC were computed by single-sample gene set enrichment analysis (ssGSEA). Glycolysis-associated lncRNAs were screened by Pearson's correlation analysis. Unsupervised consensus clustering using ConsensusClusterPlus assessed the glycolysis-associated lncRNAs for the identification of molecular subtypes of BC. The Kaplan-Meier survival analysis, genomic mutations, and tumor microenvironment (TME) analysis were used to compare the characteristics of different subtypes. Key glycolysis-associated lncRNAs were screened by first-order partial correlation and univariate Cox proportional-hazards model analyses; finally, the lncRNA signature was constructed. Four glycolysis-associated lncRNA-regulated subtypes having differential overall survival (OS), clinical features, genomic mutation profiles, and TME profiles along with nuclear immunotherapeutic responses were identified. Nine lncRNAs localized in the nucleus were identified and transcription factors (TFs) significantly negatively associated with these were found to be enriched in multiple oncogenic signaling pathways. Among them, three lncRNAs (AC093673.5, AC034220.3, and RP11-250B2.3) exerted the most profound effects on glycolysis and constituted the lncRNA signature, which could substantially distinguish the risk levels among different BC patients. Four glycolysis-associated lncRNA-regulated subtypes were identified in this study, reflective of the biological characteristics and heterogeneity of BC. Three key glycolysis-associated lncRNA constituting a signature could predict the risk levels in BC, provide a reference for stratification, and be used as prognostic markers for BC diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-022-00845-9 | DOI Listing |
Front Immunol
September 2024
School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
The dependence of tumor cells on glycolysis provides essential energy and raw materials for their survival and growth. Recent research findings have indicated that long chain non-coding RNAs (LncRNAs) have a key regulatory function in the tumor glycolytic pathway and offer new opportunities for cancer therapy. LncRNAs are analogous to a regulatory key during glycolysis.
View Article and Find Full Text PDFAging (Albany NY)
August 2024
Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China.
Background: Clear cell renal carcinoma is a common urological malignancy with poor prognosis and treatment outcomes. lncRNAs are important in metabolic reprogramming and the tumor immune microenvironment, but their role in clear cell renal carcinoma is unclear.
Methods: Renal clear cell carcinoma sample data from The Cancer Genome Atlas was used to establish a new risk profile by glycolysis-associated lncRNAs via machine learning.
BMC Med Genomics
April 2024
Department of hepatobiliary surgery, The Second Affiliated Hospital of Chengdu, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chongqing Medical University, NO.82 Qinglong Road, Chengdu, Sichuan, 610031, China.
Background: The Warburg effect is a hallmark characteristic of colorectal cancer (CRC). Despite extensive research, the role of long non-coding RNAs (lncRNAs) in influencing the Warburg effect remains incompletely understood. Our study aims to identify lncRNAs that may modulate the Warburg effect by functioning as competing endogenous RNAs (ceRNAs).
View Article and Find Full Text PDFMol Cancer
April 2024
School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
Background And Aims: Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC.
Materials And Methods: A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment.
Int J Biol Sci
March 2024
Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Glycolysis exerts a key role in the metabolic reprogramming of cancer. Specific long non-coding RNAs (lncRNAs) have been identified to exhibit oncogenic glycolysis regulation. Nevertheless, the precise mechanisms by which glycolysis-related lncRNAs control hepatocellular carcinoma (HCC) are still unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!