Objective: Long segment ureteral lesion with obstruction is a clinically difficult issue for recovering and maintaining organ or tissue function. Regeneration medicine using various biomaterials as a scaffold in supporting tissue regrowth is emerging. We developed this customized scaffold using electrospinning and 3-dimensional assistance and expected that it may provide an alternative biomaterial for ureter defect repair.
Material And Methods: Our study synthesized polycaprolactone and silk fibroin combination as biomaterial scaffolds. The differences in physicochemical properties and biocompatibility of polycaprolactone-silk fibroin bio-scaffolds prepared by electrospinning alone and 3-dimensional printing combined with electrospinning in proper ratios were compared and characterized. SV-HUC-1 uroepithelial cells cultured in polycaprolactone-silk fibroin (4 : 6) scaffolds were observed under a scanning electron microscope and using calcein-acetomethoxy and propidium iodide stain. The ex vivo resected healthy human ureteral segment tissue was anastomosed with the polycaprolactone-silk fibroin scaffolds and cultured in an ex vivo bath for 2 weeks. The cellular growth on the polycaprolactone-silk fibroin scaffold was observed microscopically. In the New Zealand white rabbit model, we performed a 1/5 ratio (2 cm out of 10 cm) defect replacement of the unilateral ureter. After 7 weeks, the rabbits were sacrificed and the implanted ureter scaffolds were resected for tissue sectioning and the cellular growth was observed by hematoxylin and eosin and Masson staining.
Results: When the proportion of silk fibroin was increased and the 3-dimensional electrospinning method was used, both the size and diameter of nanofiber holes were increased in the polycaprolactone-silk fibroin scaffold. Scanning electron microscope and fluorescent stain revealed that cultured 3T3 and SV-HUC-1 uroepithelial cells could electively penetrate inside the polycaprolactone-silk fibroin (4 : 6) nanofibrous scaffolds in 3 days. The polycaprolactone-silk fibroin scaffold anastomosis in an ex vivo bath showed cellular growth stably along the scaffold for 2 weeks, and most of the cells grow along with the outboard of the scaffold in layers. In an animal model, different layered cells can be observed to grow along with the outboard of the scaffold with mucosa, submucosa, muscular layer, and the serosa layer order after 7 weeks. Mucosa and muscular layer growth along the scaffold inner wall were seen simultaneously.
Conclusion: 3-dimensional electrospinning synthesized 4 : 6 polycaprolactone-silk fibroin nanofiber scaffolds that are feasible for tissue growth and achieve the purpose of ureteral reconstruction in animal experiments. This new form of 3-dimensional electrospinning constructed polycaprolactone-silk fibroin nanofiber scaffold may be considered as a clinical urinary tract tissue reconstruction alternative in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612786 | PMC |
http://dx.doi.org/10.5152/tud.2022.21217 | DOI Listing |
Biomater Transl
June 2024
School of Medicine, Nankai University, Tianjin, China.
Nanoscale
August 2024
Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
Theranostic sutures are derived from innovative ideas to enhance wound healing results by adding wound diagnostics and therapeutics to typical sutures by functionalizing them with additional materials. Here, we present a new direct electrospinning method for the fast, continuous, inexpensive, and high-throughput production of versatile nanofibrous-coated suture threads, with precise control over various essential microstructural and physical characteristics. The thickness of the coating layer and the alignment of nanofibers with the thread's direction can be adjusted by the user by varying the spooling speed and the displacement between the spinneret needle and thread.
View Article and Find Full Text PDFFood Chem Toxicol
September 2024
Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey. Electronic address:
This study aimed to detect the biocompatibility of bioactivated polycaprolactone/silk fibroin-based nanofibers in vivo using zebrafish embryos. Anti-Bisphenol A (BPA) antibody or lactase enzyme was immobilized on electrospun nanofibers, for making the nanofiber bioactive. Lactase immobilized nanofiber was developed to hydrolyze lactose and produce milk with reduced lactose.
View Article and Find Full Text PDFBiomater Sci
October 2023
Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
Pelvic organ prolapse (POP) is one of the common diseases in middle-aged and elderly women, caused by weakened pelvic floor muscle ligament tissue support. Pelvic floor reconstruction with mesh implantation has been proven to be an effective treatment for POP. However, traditional non-degradable and inflexible pelvic floor implantation meshes have been associated with pain, vaginal infections, and the need for additional surgeries.
View Article and Find Full Text PDFBioact Mater
September 2023
Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
Cell sheet engineering has been proven to be a promising strategy for cardiac remodeling post-myocardial infarction. However, insufficient mechanical strength and low cell retention lead to limited therapeutic efficiency. The thickness and area of artificial cardiac patches also affect their therapeutic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!