Meloidogyne incognita (Root-knot nematode) and Alternaria alternata (fungus) were among the dominant parasites of the medicinal plant Withania somnifera. Despite the fatal nature of their infection, a comprehensive study to explore their evolution and adaptation is lacking. The present study elucidates evolutionary and codon usage bias analysis of W. somnifera (host plant), M. incognita (root-knot nematode) and A. alternata (fungal parasite). The results of the present study revealed a weak codon usage bias prevalent in all the three organisms. Based on the nucleotide analysis, genome of W. somnifera and M. incognita was found to be A-T biased while A. alternata had GC biased genome. We found high similarity of CUB pattern between host and its nematode pathogen as compared to the fungal pathogen. Inclusively, both the evolutionary forces influenced the CUB in host and its associated pathogens. However, neutrality plot indicated the pervasiveness of natural selection on CUB of the host and its pathogens. Correspondence analysis revealed the dominant effect of mutation on CUB of W. somnifera and M. incognita while natural selection was the main force affecting CUB of A. alternata. Taken together the present study would provide some prolific insight into the role of codon usage bias in the adaptability of pathogens to the host's environment for establishing parasitic relationship.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050767 | PMC |
http://dx.doi.org/10.1007/s10709-022-00154-w | DOI Listing |
World J Microbiol Biotechnol
January 2025
Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.
Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Life Sciences, Nanchang University, Nanchang 330031, China.
is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).
View Article and Find Full Text PDFGenes (Basel)
January 2025
College of Forestry, Guizhou University, Guiyang 550025, China.
: Section is the most diverse group in the genus L., and this group of plants has a long history of cultivation in China as popular ornamental flowers and oil plants. Sect.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Microbiology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
The species (Cuvier, 1829) is the only representative of the family Niphonidae and the genus , and its taxonomic history is complicated; it is still unclear in a phylogenetic sense. In this study, we report the complete mitochondrial genome of (OP391482), which was determined to be 16,503 bp long with biased A + T contents (53.8%) using next-generation technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!