complex (MABC) is an important pathogen of immunocompromised patients. Accurate and rapid determination of MABC at the subspecies level is vital for optimal antibiotic therapy. Here we have used comparative genomics to design MABC subspecies-specific PCR assays. Analysis of single nucleotide polymorphisms and core genome multilocus sequence typing showed clustering of genomes into three distinct clusters representing the MABC subspecies , and . Pangenome analysis of 318 MABC genomes from the three subspecies allowed for the identification of 15 MABC subspecies-specific genes. testing of primer sets against 1,663 publicly available MABC genomes and 66 other closely related genomes showed that all assays had >97% sensitivity and >98% specificity. Subsequent experimental validation of two subspecies-specific genes each showed the PCR assays worked well in individual and multiplex format with no false-positivity with 5 other mycobacteria of clinical importance. In conclusion, we have developed a rapid, accurate, multiplex PCR-assay for discriminating MABC subspecies that could improve their detection, diagnosis and inform correct treatment choice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995789 | PMC |
http://dx.doi.org/10.3389/fcimb.2022.816615 | DOI Listing |
Vet Res Commun
December 2024
Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.
View Article and Find Full Text PDFDaru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
Naunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method.
View Article and Find Full Text PDFBiotechniques
December 2024
Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia.
In 2006, a PCR method was introduced to subtype by Sanger sequencing of an ≈610 bp amplicon of the 18S rRNA gene. This method, known as barcoding-PCR, has become widespread, although the primer pair used can amplify non- sequences, which can result in false positives. Barcoding-PCR is most effective with DNA extracted from cultures, limiting its sensitivity when used directly with stool samples.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!