A wide range of diseases result from environmental effects, and the levels of many native transcripts are altered. The alteration of non-coding RNAs (ncRNAs) and transmission of the variation to the next generation is increasingly recognized as a marker of disease. However, the determining signals and mechanisms of RNA-induced heritability remain unclear. We performed functional tests with four different genotypes of mice maintained on a high-fat diet to trace the transfer of the obesity/diabetes phenotype to the next generation in order to detect common signals. Two founders of four mouse lines ( hybrid and ) resist and do not change their phenotype while their sperm RNAs after microinjection into fertilized mouse eggs transfer the newly acquired phenotypes in a susceptible inbred line ( or ). Unexpectedly, in the same line of experiments, sperm RNA from animals raised on a normal diet when mixed with the sperm RNA from animals raised on a diet high in fat or synthetic miR-19b (inducer of obesity) affects or prevents the development of obesity and diabetes. However, it remains unclear what happens to ncRNA signaling under diet. With a comprehensive new analysis of the transcripts maintained as an RNA/DNA hybrid in sperm, we suggest that a fraction of the RNAs are stably attached to the genome. Thus, we propose that changes in the dynamics of ncRNA retention on DNA by factors such as transcriptional variations or lack of adequate methylation could serve as molecular markers to trace these epigenetics events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996111 | PMC |
http://dx.doi.org/10.3389/fgene.2022.839841 | DOI Listing |
Commun Biol
January 2025
Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.
View Article and Find Full Text PDFMol Reprod Dev
January 2025
Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.
A role for the plasminogen activator (PA) system has been postulated in mammalian gonads, considering the complex process of morphogenesis these organs undergo during their development. Our results show that mouse Sertoli cells under basal conditions produce both types of PA, tissue-type PA (tPA) and urokinase-type PA (uPA), and hormonal treatments increase the production of both enzymes. The increased enzyme secretion does not correlate with a parallel increase in their mRNAs.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Developmental Biology, Department of Morphology and Genetics-Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil.
Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.
View Article and Find Full Text PDFEpigenetics
December 2025
Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content, which induce stress-specific phenotypes in their offspring. However, how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!