Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., and ) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of and upregulation of ) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., ), apoptosis (e.g., ), blood coagulation (e.g., and ), transcription regulation (i.e., ), and stress-responses (e.g., ) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were , , , , and The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of , , , , and were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., and ) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996064 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.806484 | DOI Listing |
J Basic Microbiol
January 2025
Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, PR China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:
In recent years, the toxicity of microplastics (MPs) in combination with heavy metals, particularly the influence of varying microplastic sizes on their toxic effects, has attracted widespread attention. In this study, red swamp crayfish (Procambarus clarkia) were exposed to MPs of two particle sizes (S-MPs: 5 μm, 1 mg/L; and L-MPs: 100 μm, 1 mg/L) and Cu (5 mg/L) individually or in combination for 96 h. The accumulation patterns of MPs were as follows: gills > intestines > hepatopancreas > muscles.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy.
In this study, the genotoxic effects of three different bisphenols (BPAF, BPF and BPS) and their mixture were assessed in the crab Carcinus aestuarii. Crabs were exposed for 7 and 14 days to 300 ng/L of BPA analogues, alone or as a mixture (100 ng/L for each compound). After 7- and 14-day exposure, gills and hepatopancreas were sampled from crabs to evaluate damage to DNA by quantifying the levels of DNA single- and double-strand breaks.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan. Electronic address:
Microplastic pollution significantly threatens marine ecosystems, including those with unique adaptations. This study evaluates the implications of polyethylene microplastics (PE-MPs) on the hydrothermal vent crab, Xenograpsus testudinatus. Crabs were exposed to varying fluorescent green polyethylene microspheres (FGPE) concentrations for 7 days.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Pest and Environmental Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Australia.
Background: The bird cherry-oat aphid, Rhopalosiphum padi, is a major pest of agriculture due to its ability to directly damage crops and transmit plant viruses. As industries move away from chemical pest control, there is interest in exploring new options to suppress the impact of this pest.
Results: We describe the production of a transinfected line of R.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!