Introduction: Colorectal cancer (CRC) represents one of the most frequent human malignancies with its underlying pathogenesis still unclear. The prevalence of multi-omics in screening biomarkers associated with CRC has largely accelerated our understanding into the pathophysiology of CRC. The present work aimed to mine the Gene Expression Omnibus (GEO) datasets associated with CRC studies and identify potential targets correlated with CRC pathogenesis.

Methods: We screened the DEGs in GSE50760 and GSE104178 and performed functional Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Furthermore, the overlapped DEGs were subjected to functional GO enrichment and KEGG pathway enrichment analysis. The protein-protein interaction (PPI) network and miRNA-mRNA network were constructed based on the overlapped DEGs. The in vitro functional assays including qRT-PCR, caspase-3 and -9 activity assay, wound healing assay, CCK-8 assay and luciferase reporter assay were performed to determine the role of OTOP2/miR-3148 axis in regulating CRC cell progression.

Results: Fifty-three overlapped genes were screened over GSE50760 and GSE104178 and ten hub genes were identified by PPI network analysis. Expression levels of GCG, SST, NPY, GUCA2B, PYY, UCN3, GUCA2A, TMEM82 and BEST4 were not correlated with the overall survival of patients with CRC. However, the high expression of otopetrin 2 (OTOP2) in the CRC tissues was significantly correlated with better overall survival of patients with CRC. The expression of OTOP2 in CRC tissues was significantly lowever than that in normal ones. The in vitro functional assays demonstrated that OTOP2 silence reduced caspase-3/-9 activities, promoted cell migration, proliferation and epithelial-mesenchymal transition in HT29 and SW620 cells. Furthermore, miR-3148 could inversely regulate OTOP2 expression in CRC cell lines.

Conclusion: Collectively, the work suggested the potential role of the OTOP2/miR-3148 axis in the pathophysiology of CRC by mining the GEO database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000554PMC
http://dx.doi.org/10.2147/CMAR.S345299DOI Listing

Publication Analysis

Top Keywords

crc
13
crc cell
12
cell migration
8
migration proliferation
8
proliferation epithelial-mesenchymal
8
epithelial-mesenchymal transition
8
associated crc
8
pathophysiology crc
8
gse50760 gse104178
8
kegg pathway
8

Similar Publications

Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.

View Article and Find Full Text PDF

Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity.

View Article and Find Full Text PDF

Crosstalk between GLTSCR1-deficient endothelial cells and tumour cells promotes colorectal cancer development by activating the Notch pathway.

Cell Death Differ

January 2025

Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.

Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a leading cause of cancer-related deaths in the United States despite the availability of effective preventive screening. This project was designed as a community awareness initiative to increase CRC awareness, knowledge, and intent to discuss and complete CRC screening. This quasi-experimental study had a QI focus and used a convenience sample in a public setting assessing CRC awareness, knowledge, and intent to discuss and complete screening after participating in an inflatable colon tour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!