Sea Cucumber Body Vesicular Syndrome Is Driven by the Pond Water Microbiome via an Altered Gut Microbiota.

mSystems

Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, People's Republic of China.

Published: June 2022

Apostichopus japonicus (sea cucumber) is one of the most valuable aquaculture species in China; however, different diseases can limit its economic development. Recently, a novel disease, body vesicular syndrome (BVS), was observed in aquaculture. Diseased animals displayed no obvious phenotypic characteristics; however, after boiling at the postharvest stage, blisters, lysis, and body ruptures appeared. In this study, a multiomics strategy incorporating analysis of the gut microbiota, the pond microbiome, and genotype was established to investigate BVS. Detailed analyses of differentially expressed proteins (DEPs) and metabolites suggested that changes in cell adhesion structures, caused by disordered fatty acid β-oxidation mediated by vitamin B5 deficiency, could be a putative BVS mechanism. Furthermore, intestinal dysbacteriosis due to microbiome variations in pond water was considered a potential reason for vitamin B5 deficiency. Our BVS index, based on biomarkers identified from the gut microbiota, was a useful tool for BVS diagnosis. Finally, vitamin B5 supplementation was successfully used to treat BVS, suggesting an association with BVS etiology. Body vesicular syndrome (BVS) is a novel disease in sea cucumber aquaculture. As no phenotypic features are visible, BVS is difficult to confirm during aquaculture and postharvest activities, until animals are boiled. Therefore, BVS could lead to severe economic losses compared with other diseases in sea cucumber aquaculture. In this study, for the first time, we systematically investigated BVS pathogenesis and proposed an effective treatment for the condition. Moreover, based on the gut microbiota, we established a noninvasive diagnostic method for BVS in sea cucumber.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239130PMC
http://dx.doi.org/10.1128/msystems.01357-21DOI Listing

Publication Analysis

Top Keywords

sea cucumber
20
gut microbiota
16
body vesicular
12
vesicular syndrome
12
bvs
12
pond water
8
novel disease
8
syndrome bvs
8
vitamin deficiency
8
cucumber aquaculture
8

Similar Publications

Autophagy mediated by ROS-AKT-FoxO pathway is required for intestinal regeneration in echinoderms.

Cell Commun Signal

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.

Autophagy is essential for maintaining material balance and energy circulation and plays a critical role as a regulatory mechanism in tissue regeneration. However, current studies primarily describe this phenotype, with limited exploration of its molecular mechanisms. In this study, we provided the first evidence that autophagy is required for intestinal regeneration in Apostichopus japonicus and identified a previously unrecognized regulatory mechanism involved in this process.

View Article and Find Full Text PDF

Identification of two novel α-amylase inhibitory activity peptide from Russian sea cucumber body wallprotein hydrolysate.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. Electronic address:

This study aimed to identify novel α-amylase inhibitory peptides from Russian sea cucumbers and elucidate their inhibitory mechanisms. Among the 52 identified sea cucumber peptide (SCP), two peptides with potential α-amylase inhibitory activity, FPSPPLVA (SCP1) and GPPMPPPPLP (SCP2), were selected from the sequences researched. The results showed that both SCP1 and SCP2 exhibited α-amylase inhibitory activity with IC of 0.

View Article and Find Full Text PDF

Characterization and film-forming properties of collagen from three species of sea cucumber from the South China Sea: Emphasizing the effect of transglutaminase.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China. Electronic address:

This study aimed to investigate the structural characteristics of Stichopus horrens collagen (SHC), Holothuria scabra collagen (HSC), and Holothuria leucospilota collagen (HLC) and to assess the effect of transglutaminase (TGase) on their film-forming properties. The results indicated that the collagens from three species of sea cucumbers were type I collagen with a complete triple helical structure. The thermal denaturation temperature of HLC (34.

View Article and Find Full Text PDF

Body wall of sea cucumber Bohadschia bivittate contains a protein consisting of highly insoluble collagen fibers. We aimed to evaluate the biocompatibility and cytotoxicity of nonirradiated or γ-irradiated pepsin soluble collagen (PSC) extracted from Bohadschia bivittata on human periodontal ligament fibroblasts cells. The MTT assay showed significant increase in the cell viability values indicating that PSC is noncytotoxic.

View Article and Find Full Text PDF

Identification of the arachidonic acid 5-lipoxygenase and its function in the immunity of Apostichopus japonicus.

Fish Shellfish Immunol

December 2024

Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China; Dalian Jinshiwan Laboratory, Dalian, PR China. Electronic address:

A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!