Background: The flowers of some species of orchids produce nectar as a reward for pollination, the process of transferring pollen from flower to flower. Epipactis albensis is an obligatory autogamous species, does not require the presence of insects for pollination, nevertheless, it has not lost the ability to produce nectar, the chemical composition of which we examined by gas chromatography-mass spectrometry (GC-MS) method for identification of potential insect attractants.

Results: During five years of field research, we did not observe any true pollinating insects visiting the flowers of this species, only accidental insects as ants and aphids. As a result of our studies, we find that this self-pollinating orchid produces in nectar inter alia aliphatic saturated and unsaturated aldehydes such as nonanal (pelargonal) and 2-pentenal as well as aromatic ones (i.e., syringaldehyde, hyacinthin). The nectar is low in alkenes, which may explain the absence of pollinating insects. Moreover, vanillin and eugenol derivatives, well-known as important scent compounds were also identified, but the list of chemical compounds is much poorer compared with a closely related species, insect-pollinating E. helleborine.

Conclusion: Autogamy is a reproductive mechanism employed by many flowering plants, including the orchid genus Epipactis, as an adaptation to growing in habitats where pollinating insects are rarely observed due to the lack of nectar-producing plants they feed on. The production of numerous chemical attractants by self-pollinated E. albensis confirms the evolutionary secondary process, i.e., transition from ancestral insect-pollinating species to obligatory autogamous.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006510PMC
http://dx.doi.org/10.1186/s12870-022-03563-3DOI Listing

Publication Analysis

Top Keywords

pollinating insects
12
epipactis albensis
8
flowers species
8
produce nectar
8
obligatory autogamous
8
species
5
insects
5
obligate autogamous
4
autogamous orchid
4
orchid produce
4

Similar Publications

Land-use changes have led to natural habitat loss and fragmentation, favoring the occurrence of dominant bee species in agroecosystems. This has raised concerns on the dominance effects in pollination-dependent crops like passion fruits (Passiflora edulis Sims) in tropical regions. That is because dominant bee species might overlap their foraging time with regular pollinators, potentially impairing crop yield.

View Article and Find Full Text PDF

Many butterfly species are conspicuous flower visitors. However, understanding their flower visitation patterns in natural habitats remains challenging due to the difficulty of tracking individual butterflies. Therefore, we aimed at establishing a protocol to solve the problem using the Common five-ring butterfly, Ypthima argus (Nymphalidae: Satyrinae).

View Article and Find Full Text PDF

Flower colour contrast, 'spectral purity' and a red herring.

Plant Biol (Stuttg)

January 2025

Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany.

Nature offers a bewildering diversity of flower colours. Understanding the ecology and evolution of this fantastic floral diversity requires knowledge about the visual systems of their natural observers, such as insect pollinators. The key question is how flower colour and pattern can be measured and represented to characterise the signals that are relevant to pollinators.

View Article and Find Full Text PDF

[The role of volatile organic compounds in plant-insect communication].

Biol Aujourdhui

January 2025

Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.

Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).

View Article and Find Full Text PDF

[The many ways flowers send signals to pollinators].

Biol Aujourdhui

January 2025

Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!