. The design of neutron moderators for BNCT treatment units currently relies on parametric approaches, which yield quality results but are ultimately limited by human imagination. Efficient but non-intuitive design solutions may thus be missed out. This limitation needs to be addressed.. To overcome this limitation, we propose to use a topology optimization algorithm coupled with a state-of-the-art Monte-Carlo transport code. This approach recently proved capable of finding complex optimal configurations of particle propagators with limited human intervention.. In this study, we apply this algorithmic solution to optimize some heavy-water neutron moderators for a specific AB-BNCT treatment unit. The moderators thus generated are compact yet succeed in limiting the exposure of patient's healthy tissues to levels below recommended limits. They present subtle, original geometries inaccessible to standard parametric approaches or human intuition.. This approach could be used to automatically fit the design of a BNCT moderator to the location and shape of the tumor or to the morphology of the patient to be treated, opening a path for more targeted BNCT treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ac6723DOI Listing

Publication Analysis

Top Keywords

topology optimization
8
optimization algorithm
8
neutron moderators
8
bnct treatment
8
parametric approaches
8
limited human
8
heavy-water-based moderator
4
design
4
moderator design
4
design ab-bnct
4

Similar Publications

Stroke is the main cause of disability among neurological diseases. There are questions of the accuracy of topical diagnosis and rehabilitation prognosis in clinical practice. Answers to these questions may be given by an approach to the study of the nervous system as a dynamic network consisting of a set of brain regions with anatomical and functional connections between them.

View Article and Find Full Text PDF

Microvascular decompression (MVD) is a neurosurgical operation used to treat trigeminal neuralgia (TN). The surgery is performed through a retrosigmoid approach, where a Teflon pledget is placed in between the offending vessel (most commonly the superior cerebellar artery) and trigeminal nerve. The surgery is performed within the superior aspect of the cerebellopontine angle (CPA) through a small working corridor that is triangulated by the petrous bone and tentorium.

View Article and Find Full Text PDF

Vaccination is the most effective method of preventing and controlling the transmission of infectious diseases within populations. However, the phenomenon of waning immunity can induce periodic fluctuations in epidemic spreading. This study proposes a coupled epidemic-vaccination dynamic model to analyze the influence of immunity waning on the epidemic spreading within the context of voluntary vaccination.

View Article and Find Full Text PDF

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.

View Article and Find Full Text PDF

Brain-inspired wiring economics for artificial neural networks.

PNAS Nexus

January 2025

School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

Wiring patterns of brain networks embody a trade-off between information transmission, geometric constraints, and metabolic cost, all of which must be balanced to meet functional needs. Geometry and wiring economy are crucial in the development of brains, but their impact on artificial neural networks (ANNs) remains little understood. Here, we adopt a wiring cost-controlled training framework that simultaneously optimizes wiring efficiency and task performance during structural evolution of sparse ANNs whose nodes are located at arbitrary but fixed positions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!