An in silico model predicts the impact of scaffold design in large bone defect regeneration.

Acta Biomater

Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, Berlin 13353, Germany; Berlin-Brandenburg School for Regenerative Therapies, Augustenburger Platz 1, Berlin 13353, Germany. Electronic address:

Published: June 2022

Large bone defects represent a clinical challenge for which the implantation of scaffolds appears as a promising strategy. However, their use in clinical routine is limited, in part due to a lack of understanding of how scaffolds should be designed to support regeneration. Here, we use the power of computer modeling to investigate mechano-biological principles behind scaffold-guided bone regeneration and the influence of scaffold design on the regeneration process. Computer model predictions are compared to experimental data of large bone defect regeneration in sheep. We identified two main key players in scaffold-guided regeneration: (1) the scaffold surface guidance of cellular migration and tissue formation processes and (2) the stimulation of progenitor cell activity by the scaffold material composition. In addition, lower scaffold surface-area-to-volume ratio was found to be beneficial for bone regeneration due to enhanced cellular migration. To a lesser extent, a reduced scaffold Young's modulus favored bone formation. STATEMENT OF SIGNIFICANCE: 3D-printed scaffolds offer promising treatment strategies for large bone defects but their broader clinical use requires a more thorough understanding of their interaction with the bone regeneration process. The predictions of our in silico model compared to two experimental set-ups highlighted the importance of (1) the scaffold surface guidance of cellular migration and tissue formation processes and (2) the scaffold material stimulation of progenitor cell activity. In addition, the model was used to investigate the effect on the bone regeneration process of (1) the scaffold surface-area-to-volume ratio, with lower ratios favoring more bone growth, and (2) the scaffold material properties, with stiffer scaffold materials yielding a lower bone growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.04.008DOI Listing

Publication Analysis

Top Keywords

large bone
16
bone regeneration
16
regeneration process
12
cellular migration
12
scaffold material
12
scaffold
11
bone
11
regeneration
9
silico model
8
scaffold design
8

Similar Publications

Multifunctional electrospinning periosteum: Development status and prospect.

J Biomater Appl

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China.

In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.

View Article and Find Full Text PDF

: Although CDK4/6 inhibitors combined with endocrine therapies have improved outcomes in HR+ HER2-negative metastatic breast cancer, predictive biomarkers for treatment response and adverse effects remain limited. This study assessed the prognostic and predictive value of large unstained cells (LUC), a subset of white blood cells that may reflect immune status or treatment response. : A retrospective analysis of 210 patients with HR+ HER2-negative metastatic breast cancer treated with CDK 4/6 inhibitors between 2021 and 2024 was conducted.

View Article and Find Full Text PDF

: Giant cell tumor of bone (GCTB) is a locally aggressive tumor. It accounts for only 5% of all bony tumors. Early diagnosis, and follow-up for recurrence is often difficult due to a lack of biogenetic markers.

View Article and Find Full Text PDF

Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!