Salmonella infections typically cause self-limiting gastroenteritis, but in some individuals these bacteria can spread systemically and cause disseminated disease. Salmonella Typhimurium (STm), which causes severe systemic disease in most inbred mice, has been used as a model for disseminated disease. To screen for new infection phenotypes across a range of host genetics, we orally infected 32 Collaborative Cross (CC) mouse strains with STm and monitored their disease progression for seven days by telemetry. Our data revealed a broad range of phenotypes across CC strains in many parameters including survival, bacterial colonization, tissue damage, complete blood counts (CBC), and serum cytokines. Eighteen CC strains survived to day 7, while fourteen susceptible strains succumbed to infection before day 7. Several CC strains had sex differences in survival and colonization. Surviving strains had lower pre-infection baseline temperatures and were less active during their daily active period. Core body temperature disruptions were detected earlier after STm infection than activity disruptions, making temperature a better detector of illness. All CC strains had STm in spleen and liver, but susceptible strains were more highly colonized. Tissue damage was weakly negatively correlated to survival. We identified loci associated with survival on Chromosomes (Chr) 1, 2, 4, 7. Polymorphisms in Ncf2 and Slc11a1, known to reduce survival in mice after STm infections, are located in the Chr 1 interval, and the Chr 7 association overlaps with a previously identified QTL peak called Ses2. We identified two new genetic regions on Chr 2 and 4 associated with susceptibility to STm infection. Our data reveal the diversity of responses to STm infection across a range of host genetics and identified new candidate regions for survival of STm infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067680 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1010075 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany.
Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.
View Article and Find Full Text PDFSci Transl Med
January 2025
Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary.
Several antibiotic candidates are in development against Gram-positive bacterial pathogens, but their long-term utility is unclear. To investigate this issue, we studied the laboratory evolution of resistance to antibiotics that have not yet reached the market. We found that, with the exception of compound SCH79797, antibiotic resistance generally readily evolves in .
View Article and Find Full Text PDFSci Transl Med
January 2025
Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
Elicitation of HIV broadly neutralizing antibodies (bnAbs) by vaccination first requires the activation of diverse precursors, followed by successive boosts that guide these responses to enhanced breadth through the acquisition of somatic mutations. Because HIV bnAbs contain mutations in their B cell receptors (BCRs) that are rarely generated during conventional B cell maturation, HIV vaccine immunogens must robustly engage and expand B cells with BCRs that contain these improbable mutations. Here, we engineered an immunogen that activates diverse precursors of an HIV V3-glycan bnAb and promotes their acquisition of a functionally critical improbable mutation.
View Article and Find Full Text PDFSci Transl Med
January 2025
Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA.
The conserved influenza hemagglutinin stem, which is a target of cross-neutralizing antibodies, is now used in vaccine strategies focused on protecting against influenza pandemics. Antibody responses to group 1 stem have been extensively characterized, but little is known about group 2. Here, we characterized the stem-specific repertoire of individuals vaccinated with one of three group 2 influenza subtypes (H3, H7, or H10).
View Article and Find Full Text PDFActa Anaesthesiol Scand
January 2025
CAG Center for Endotheliomics, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
Background: Acute respiratory failure (ARF) is common in critically ill patients, and 50% of patients in intensive care units require mechanical ventilation [3, 4]. The COVID-19 pandemic revealed that COVID-19 infection induced ARF caused by damage to the microvascular pulmonary endothelium. In a randomized clinical trial, mechanically ventilated COVID-19 patients with severe endotheliopathy, as defined by soluble thrombomodulin (sTM) ≥ 4 ng/mL, were randomized to evaluate the effect of a 72-h infusion of low-dose prostacyclin 1 ng/kg/min or placebo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!