Background: Two trials reported that a high inspiratory oxygen fraction (F io2 ) does not promote myocardial infarction or death. Observational studies can provide larger statistical strength, but associations can be due to unobserved confounding. Therefore, we evaluated the association between intraoperative F io2 and cardiovascular complications in a large international cohort study to see if spurious associations were observed.

Methods: We included patients from the Vascular events In noncardiac Surgery patIents cOhort evaluatioN (VISION) study, who were ≥45 years of age, scheduled for overnight hospital admission, and had intraoperative F io2 recorded. The primary outcome was myocardial injury after noncardiac surgery (MINS), and secondary outcomes included mortality and pneumonia, all within 30 postoperative days. Data were analyzed with logistic regression, adjusted for many baseline cardiovascular risk factors, and illustrated in relation to findings from 2 recent controlled trials.

Results: We included 6588 patients with mean age of 62 years of whom 49% had hypertension. The median intraoperative F io2 was 0.46 (5%-95% range, 0.32-0.94). There were 808 patients (12%) with MINS. Each 0.10 increase in median F io2 was associated with a confounder-adjusted increase in odds for MINS: odds ratio (OR), 1.17 (95% confidence interval [CI], 1.12-1.23; P < .0001). MINS occurred in contrast with similar frequencies and no significant difference in controlled trials (2240 patients, 194 events), in which patients were given 80% vs 30% oxygen. Mortality was 2.4% and was not significantly associated with a median F io2 (OR, 1.07; 95% CI, 0.97-1.19 per 0.10 increase; P = .18), and 2.9% of patients had pneumonia (OR, 1.05; 95% CI, 0.95-1.15 per 0.10 increase; P = .34).

Conclusions: We observed an association between intraoperative F io2 and risk of myocardial injury within 30 days after noncardiac surgery, which contrasts with recent controlled clinical trials. F io2 was not significantly associated with mortality or pneumonia. Unobserved confounding presumably contributed to the observed association between F io2 and myocardial injury that is not supported by trials.

Download full-text PDF

Source
http://dx.doi.org/10.1213/ANE.0000000000006042DOI Listing

Publication Analysis

Top Keywords

myocardial injury
16
noncardiac surgery
16
intraoperative io2
16
010 increase
12
io2
9
inspiratory oxygen
8
oxygen fraction
8
injury noncardiac
8
controlled trials
8
unobserved confounding
8

Similar Publications

Acute myocardial infarction (MI) is a leading cause of death worldwide. Although with current treatment, acute mortality from MI is low, the damage and remodeling associated with MI are responsible for subsequent heart failure. Reducing cell death associated with acute MI would decrease the mortality associated with heart failure.

View Article and Find Full Text PDF

The close interaction of mitochondrial fission and mitophagy, two crucial mechanisms, is key in the progression of myocardial ischemia-reperfusion (IR) injury. However, the upstream regulatory mechanisms governing these processes remain poorly understood. Here, we demonstrate a marked elevation in Nr4a1 expression following myocardial IR injury, which is associated with impaired cardiac function, heightened cardiomyocyte apoptosis, exacerbated inflammatory responses, and endothelial dysfunction.

View Article and Find Full Text PDF

Despite improvements in clinical outcomes of acute myocardial infarction (AMI), mortality rates remain high, indicating the need for further understanding of the pathogenesis and developing more effective cardiac protection strategies. Extracellular vesicles (EVs) carry proteins and noncoding RNAs (ncRNAs) derived from different cardiac cell populations, mainly including cardiomyocytes, endothelial cells, endothelial progenitor cells, cardiac progenitor cells, cardiosphere-derived cells, immune cells, fibroblasts and cardiac telocytes have vital roles under both physiological and pathological process such as myocardial infarction (MI). The content of EVs can also indicate the status of their parental cells and serve as a biomarker for monitoring the risk of cardiac injury.

View Article and Find Full Text PDF

Myocardial injury is prone to occur during myocardial ischemia-reperfusion, which further causes adverse cardiac events. Cardiomyopeptide (CMP) has been found to protect the heart against ischemia-reperfusion injury. The present study will explore the molecular and signaling mechanisms associated with the therapeutic effects of CMP.

View Article and Find Full Text PDF

The spleen in ischaemic heart disease.

Nat Rev Cardiol

January 2025

Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.

Ischaemic heart disease is a consequence of coronary atherosclerosis, and atherosclerosis is a systemic inflammatory disease. The spleen releases various immune cells in temporally distinct patterns. Neutrophils, monocytes, macrophages, B cells and T cells execute innate and adaptive immune processes in the coronary atherosclerotic plaque and in the ischaemic myocardium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!