Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A deep clustering network (DCN) is desired for data streams because of its aptitude in extracting natural features thus bypassing the laborious feature engineering step. While automatic construction of deep networks in streaming environments remains an open issue, it is also hindered by the expensive labeling cost of data streams rendering the increasing demand for unsupervised approaches. This article presents an unsupervised approach of DCN construction on the fly via simultaneous deep learning and clustering termed autonomous DCN (ADCN). It combines the feature extraction layer and autonomous fully connected layer in which both network width and depth are self-evolved from data streams based on the bias-variance decomposition of reconstruction loss. The self-clustering mechanism is performed in the deep embedding space of every fully connected layer, while the final output is inferred via the summation of cluster prediction score. Furthermore, a latent-based regularization is incorporated to resolve the catastrophic forgetting issue. A rigorous numerical study has shown that ADCN produces better performance compared with its counterparts while offering fully autonomous construction of ADCN structure in streaming environments in the absence of any labeled samples for model updates. To support the reproducible research initiative, codes, supplementary material, and raw results of ADCN are made available in https://github.com/andriash001/AutonomousDCN.git.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2022.3163362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!