Spray-Dried Monoclonal Antibody Suspension for High-Concentration and Low-Viscosity Subcutaneous Injection.

Mol Pharm

School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China.

Published: May 2022

Administration of highly concentrated monoclonal antibodies (mAbs) through injection is often not possible as the viscosity can be readily above 50 mPa·s when the concentration exceeds 150 mg/mL. Besides, highly concentrated mAb solutions always exhibit increased aggregation propensity and lower stability, which raise the difficulty for the successful development of highly concentrated mAb formulations. We hereby explored the possibility of suspension as another formulation form for high-concentration proteins to reduce viscosity and maintain stability. Specifically, we demonstrated that spray drying can serve as a process to prepare particles for suspension. Particles prepared from formulations with different mAb/trehalose mass ratios displayed good physical stability and antibody binding affinity, as indicated by circular dichroism, fluorescence spectroscopy, and surface plasmon resonance (SPR)-based bioassay analyses. During spray drying, a surface tension-dominated enrichment of mAb on the particle surface was observed, but this did not show a significant negative impact on mAb stability. Spray-dried particles were subsequently suspended into benzyl benzoate, and the resulting suspension showed good stability and a lower viscosity when compared to its counterpart solution. Furthermore, mAbs recovered from the suspension maintained their conformational structure. Our study demonstrated that the suspension displayed low viscosity and good physical stability, so it may offer novel opportunities for the preparation of highly concentrated protein formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.2c00039DOI Listing

Publication Analysis

Top Keywords

highly concentrated
16
concentrated mab
8
spray drying
8
good physical
8
physical stability
8
suspension
6
stability
6
spray-dried monoclonal
4
monoclonal antibody
4
antibody suspension
4

Similar Publications

Molecularly imprinted electrochemical sensor to sensitively detect tetramethylpyrazine in Baijiu.

Analyst

January 2025

Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Tetramethylpyrazine (TMP) is a compound known for its natural health benefits, but current detection methods for TMP are overly expensive and time-consuming. In this study, we developed functional materials with TMP molecular recognition properties using molecularly imprinted technology. As TMP does not produce electrochemical signals in the detection potential range, hexacyanoferrate was selected as a redox probe, combined with the highly conductive polymer PEDOT:PSS to enhance electrode conductivity.

View Article and Find Full Text PDF

Electrochemical capacitance-based aptasensor for HER2 detection.

Biomed Microdevices

January 2025

Department of Physics, Faculty of Philosophy, Science and Letter, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.

The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) protein is specifically related to tumor cell proliferation in breast cancers. Its presence in biological serum samples indicates presence or progression of cancer, becoming a promise biomarker. However, their detection needs a simple and high accuracy platform.

View Article and Find Full Text PDF

Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.

View Article and Find Full Text PDF

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

The T315I-inclusive compound mutation, the multiple mutations including the T315I mutation on the same BCR::ABL1 gene, confers resistance to diverse tyrosine kinase inhibitors (TKIs). Development of the F311I/T315I compound mutation has been reported in chronic myeloid leukemia patients who sequentially showed clinical resistance to imatinib and dasatinib. The establishment of a human leukemia model with the T315I-inclusive compound mutation remains an experimental challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!