Orbital-Selective High-Temperature Cooper Pairing Developed in the Two-Dimensional Limit.

Nano Lett

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China.

Published: April 2022

For multiband superconductors, the orbital multiplicity yields orbital differentiation in normal-state properties and can lead to orbital-selective spin-fluctuation Cooper pairing. The orbital-selective phenomenon has become increasingly pivotal in clarifying the pairing "enigma", particularly for multiband high-temperature superconductors. Meanwhile, in one-unit-cell (1-UC) FeSe/SrTiO, since the standard electron-hole Fermi pocket nesting scenario is inapplicable, the actual pairing mechanism is subject to intense debate. Here, by measuring high-resolution Bogoliubov quasiparticle interference, we report observations of highly anisotropic magnetic Cooper pairing in 1-UC FeSe. Theoretically, it is important to incorporate orbitally selective effects of electronic correlations within a spin-fluctuation pairing calculation, where the d orbital becomes coherence-suppressed. The resulting pairing gap is compatible with the experimental findings, which suggests that high- Cooper pairing with orbital selectivity applies to 2D-limit 1-UC FeSe. Our findings imply the general existence of orbital selectivity in iron-based superconductors and the universal significance of electron correlations in high- superconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c04863DOI Listing

Publication Analysis

Top Keywords

cooper pairing
16
pairing
8
1-uc fese
8
orbital selectivity
8
orbital
5
orbital-selective high-temperature
4
cooper
4
high-temperature cooper
4
pairing developed
4
developed two-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!