Asymmetric competition occurs when some species have distinct advantages over their competitors and is common in animals with overlapping habitats and diet. However, the mechanism allowing coexistence between asymmetric competitors is not fully clear. Chinese white-bellied rats (Niviventer confucianus, CWR) and Korean field mice (Apodemus peninsulae, KFM) are common asymmetric competitors in shrublands and forests west of Beijing city. They share similar diet (e.g. plant seeds) and activity (nocturnal), but differ in body size (CWR are bigger than KFM), food hoarding habit (CWR: mainly larder hoarding; KFM: both larder and scatter hoarding), and ability to protect cached food (CWR are more aggressive than KFM). Here, we tested seed competition in 15 CWR-KFM pairs over a 10-day period under semi-natural enclosure conditions to uncover the differences in food hoarding, cache pilferage, and food protection between the 2 rodents, and discuss the implication for coexistence. Prior to pilferage, CWR harvested and ate more seeds than KFM. CWR tended to larder hoard seeds, whereas KFM preferred to scatter hoard seeds. Following pilferage, CWR increased consumption, decreased intensity of hoarding, and pilfered more caches from KFM than they lost, while KFM increased consumption more than they hoarded, and they preferred to hoard seeds in low and medium competition areas. Accordingly, both of the 2 rodent species increased their total energy consumption and hoarding following pilferage. Both rodent species tended to harvest seeds from the source, rather than pilfer caches from each other to compensate for cache loss via pilferage. Compared to CWR, KFM consumed fewer seeds when considering seed number, but hoarded more seeds when considering the seeds' relative energy (energy of hoarded seeds/rodent body mass ) at the end of the trials. These results suggest that asymmetric competition for food exists between CWR and KFM, but differentiation in hoarding behavior could help the subordinate species (i.e. KFM) hoard more energy than the dominant species (i.e. CWR), and may contribute to their coexistence in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1749-4877.12650DOI Listing

Publication Analysis

Top Keywords

asymmetric competition
12
food hoarding
12
hoard seeds
12
kfm
11
cwr
10
seeds
9
hoarding
8
coexistence asymmetric
8
asymmetric competitors
8
pilferage cwr
8

Similar Publications

Termites are eusocial cockroaches whose altruist caste is constituted of males and females. While sex ratio theory predicts a balanced investment between sexes in diploid organisms, extreme deviations are observed in termites, both in altruists and alate reproductives. Here, we expand the theoretical framework for the prediction of alate population sex ratio by considering partitioned sexual and parthenogenetic reproduction, and female/male relatedness asymmetries arising from their sex-linked chromosome complexes.

View Article and Find Full Text PDF

Carbon composite is one of the most competitive electrode materials for supercapacitor, and improving its energy density remains a significant challenge. The copper oxide/carbon composites with high specific surface area were prepared from the cellulose aerogel loaded with copper salts. The copper oxide/carbon composite electrode material, deriving from copper sulfate, reached a specific capacitance of 1001 F g at 2 A g, with an energy density of 139.

View Article and Find Full Text PDF

Matching suitable jobs provided by employers with qualified candidates is a crucial task for online recruitment. Typically, candidates and employers have specific expectations in recruitment market, leading them to prefer similar jobs and candidates, respectively. Metric learning provides a promising way to capture the similarity propagation between candidates and jobs.

View Article and Find Full Text PDF

Existing studies of multi-modality medical image segmentation tend to aggregate all modalities without discrimination and employ multiple symmetric encoders or decoders for feature extraction and fusion. They often overlook the different contributions to visual representation and intelligent decisions among multi-modality images. Motivated by this discovery, this paper proposes an asymmetric adaptive heterogeneous network for multi-modality image feature extraction with modality discrimination and adaptive fusion.

View Article and Find Full Text PDF

Camouflaged object detection (COD) and salient object detection (SOD) are two distinct yet closely-related computer vision tasks widely studied during the past decades. Though sharing the same purpose of segmenting an image into binary foreground and background regions, their distinction lies in the fact that COD focuses on concealed objects hidden in the image, while SOD concentrates on the most prominent objects in the image. Building universal segmentation models is currently a hot topic in the community.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!