Basic data for the safety assessment of transgenic line involves the molecular characterization of the integration site of exogenous DNA, flanking sequences, copy number, and unintended plasmid backbone residues. However, performing a full molecular characterization remains challenging, especially for GMOs that possess complex exogenous DNA integrations. We established two whole-genome sequencing strategies: paired-end and mate-pair, to characterize the exogenous DNA integration of a human serum albumin gene into rice line 114-7-2, and evaluated the performance of these two strategies in the molecular characterization of transgenic line. The results showed the existence of two exogenous DNA insertion loci (Chr 01 and Chr 04) and their corresponding flanking sequences, five copies of the exogenous gene, and the presence of unintended residual plasmid backbone sequences. However, the WGS-MP strategy demonstrated higher efficiency, lower cost, and lower background noise compared with the WGS-PE analysis, especially for identification of the exogenous DNA integration site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991703 | PMC |
http://dx.doi.org/10.1016/j.fochms.2021.100061 | DOI Listing |
Cell Death Discov
January 2025
Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea.
Free radicals, characterized by the presence of unpaired electrons, are highly reactive species that play a significant role in human health. These molecules can be generated through various endogenous processes, such as mitochondrial respiration and immune cell activation, as well as exogenous sources, including radiation, pollution, and smoking. While free radicals are essential for certain physiological processes, such as cell signaling and immune defense, their overproduction can disrupt the delicate balance between oxidants and antioxidants, leading to oxidative stress.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States.
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.
View Article and Find Full Text PDFbioRxiv
January 2025
School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112.
Meiotic chromosome segregation requires reciprocal exchanges between the parental chromosomes (homologs). Exchanges are formed via tightly-regulated repair of double-strand DNA breaks (DSBs). However, since repair intermediates are mostly quantified in fixed images, our understanding of the mechanisms that control the progression of repair remains limited.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA.
Genome organization is important for DNA replication, gene expression, and chromosome segregation. In bacteria, two large families of proteins, nucleoid-associated proteins (NAPs) and SMC complexes, play important roles in organizing the genome. NAPs are highly abundant DNA-binding proteins that can bend, wrap, bridge, and compact DNA, while SMC complexes load onto the chromosome, translocate on the DNA, and extrude DNA loops.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China.
Sudden biological contamination in Drinking Water Distribution System (DWDS) significantly threatens the safety of drinking water, with E. coli invasions being particularly hazardous to human health. Traditional disinfection methods (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!