A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of a Concept Mapping Task Using Named Entity Recognition and Normalization in Unstructured Clinical Text. | LitMetric

Evaluation of a Concept Mapping Task Using Named Entity Recognition and Normalization in Unstructured Clinical Text.

J Healthc Inform Res

Cambridge Clinical Informatics, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, England UK.

Published: December 2020

In this pilot study, we explore the feasibility and accuracy of using a query in a commercial natural language processing engine in a named entity recognition and normalization task to extract a wide spectrum of clinical concepts from free text clinical letters. Editorial guidance developed by two independent clinicians was used to annotate sixty anonymized clinic letters to create the gold standard. Concepts were categorized by semantic type, and labels were applied to indicate contextual attributes such as negation. The natural language processing (NLP) engine was Linguamatics I2E version 5.3.1, equipped with an algorithm for contextualizing words and phrases and an ontology of terms from Intelligent Medical Objects to which those tokens were mapped. Performance of the engine was assessed on a training set of the documents using precision, recall, and the F1 score, with subset analysis for semantic type, accurate negation, exact versus partial conceptual matching, and discontinuous text. The engine underwent tuning, and the final performance was determined for a test set. The test set showed an F1 score of 0.81 and 0.84 using strict and relaxed criteria respectively when appropriate negation was not required and 0.75 and 0.77 when it was. F1 scores were higher when concepts were derived from continuous text only. This pilot study showed that a commercially available NLP engine delivered good overall results for identifying a wide spectrum of structured clinical concepts. Such a system holds promise for extracting concepts from free text to populate problem lists or for data mining projects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982815PMC
http://dx.doi.org/10.1007/s41666-020-00079-zDOI Listing

Publication Analysis

Top Keywords

named entity
8
entity recognition
8
recognition normalization
8
text pilot
8
pilot study
8
natural language
8
language processing
8
wide spectrum
8
clinical concepts
8
concepts free
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!