A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gold Tablets: Gold Nanoparticles Encapsulated into Dextran Tablets and Their pH-Responsive Behavior as an Easy-to-Use Platform for Multipurpose Applications. | LitMetric

Gold Tablets: Gold Nanoparticles Encapsulated into Dextran Tablets and Their pH-Responsive Behavior as an Easy-to-Use Platform for Multipurpose Applications.

ACS Omega

Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, H4B 1R6, Canada.

Published: April 2022

Many applications using gold nanoparticles (AuNPs) require (i) their functionalization with a biopolymer to increase their stability and (ii) their transformation into an easy-to-handle material, which provide them with specific properties. In this research, a portable tablet platform is presented based on dextran-encapsulated gold nanoparticles (AuNPs-dTab) by a ligand exchange reaction between citrate-capped gold nanoparticles (AuNPs-Cit) and dextran. These newly fabricated tablets were characterized utilizing ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction spectroscopy (XRD), differential scanning calorimetry (DSC), and atomic force microscopy (AFM) techniques. The results showed that dextran-capped gold nanoparticles in a tablet platform (AuNPs-dTab) were well-dispersed and highly stable for at least a year at room temperature. In addition to particle and surface characterization of AuNPs-dTab, the tablet morphology in terms of thickness, diameter, density, and opacity was also measured using 6 and 10% dextran with 2, 4 and 8 nM AuNPs-Cit. We further investigated the pH-responsive behavior of AuNPs-dTab in the presence and absence of sodium chloride. Results showed that neutral and alkaline environments were suitable to render AuNPs dispersed in a tablet, while an acidic condition controls the aggregation rate of AuNPs as confirmed by concentration-dependent aggregation phenomena. Besides the easy fabrication, these tablets were portable and low-cost (approx. 1.22 CAD per 100 tablets of a 100 μL solution of dextran-capped gold nanoparticles (AuNPs-dSol)). The biocompatible nature of dextran along with the acidic medium trigger nature of AuNPs makes our proposed tablet a potential candidate for cancer therapy due to the acidic surrounding of tumor tissues as compared to normal cells. Also, our proposed tablet approach paves the way for the fabrication of portable and easy-to-use optical sensors based on the AuNPs embedded in a natural polymeric architecture that would serve as a colorimetric recognition indicator for detecting analytes of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991920PMC
http://dx.doi.org/10.1021/acsomega.1c07393DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
24
ph-responsive behavior
8
tablet platform
8
dextran-capped gold
8
proposed tablet
8
gold
7
nanoparticles
6
tablet
6
aunps
5
gold tablets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!