A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineered neuronal microtissue provides exogenous axons for delayed nerve fusion and rapid neuromuscular recovery in rats. | LitMetric

Nerve injury requiring surgical repair often results in poor functional recovery due to the inability of host axons to re-grow long distances and reform meaningful connections with the target muscle. While surgeons can re-route local axon fascicles to the target muscle, there are no technologies to provide an exogenous source of axons without sacrificing healthy nerves. Accordingly, we have developed tissue engineered neuromuscular interfaces (TE-NMIs) as the first injectable microtissue containing motor and sensory neurons in an anatomically-inspired architecture. TE-NMIs provide axon tracts that are intended to integrate with denervated distal structures and preserve regenerative capacity during prolonged periods without host innervation. Following implant, we found that TE-NMI axons promoted Schwann cell maintenance, integrated with distal muscle, and preserved an evoked muscle response out to 20-weeks post nerve transection in absence of innervation from host axons. By repopulating the distal sheath with exogenous axons, TE-NMIs also enabled putative delayed fusion with proximal host axons, a phenomenon previously not achievable in delayed repair scenarios due to distal axon degeneration. Here, we found immediate electrophysiological recovery after fusion with proximal host axons and improved axon maturation and muscle reinnervation at 24-weeks post-transection (4-weeks following delayed nerve fusion). These findings show that TE-NMIs provide the potential to improve functional recovery following delayed nerve repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965778PMC
http://dx.doi.org/10.1016/j.bioactmat.2022.03.018DOI Listing

Publication Analysis

Top Keywords

host axons
16
delayed nerve
12
axons
8
exogenous axons
8
nerve fusion
8
functional recovery
8
target muscle
8
te-nmis provide
8
fusion proximal
8
proximal host
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!