In vivo and real-time analysis could reflect a more real biological state, which was of great significance to the study of complex life processes. In this work, we constructed an online extraction electrospray ionization (OE-ESI) ion source as the interface of microdialysis and mass spectrometry, which realized real-time analysis of metabolites in vivo without sample pretreatment process. The ion source was consisted of three coaxial capillaries, and the parameters of the ion source were optimized. The OE-ESI ion source could simultaneously extract, desalt and ionize the analyte, successfully perform MS analysis of analyte in high salt system, and overcome the ion suppression caused by salt ion. Compared with commercial ESI MS, the OE-ESI ion source had excellent salt tolerance and stability. MD-OE-ESI MS realized the real-time MS detection of metabolites in the living body, avoiding the complex desalting process. In the rat liver ischemia-reperfusion model, a total of 24 metabolites, including glucose, glutamate, glutamine, etc., were monitored in real time mode, and their concentrations had varying degrees of change during the experimental process compared with the control group. This platform, we believed, would be helpful for real-time monitoring of biological metabolites in vivo, and had great application prospects to study physiological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.339760 | DOI Listing |
J Colloid Interface Sci
December 2024
Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:
Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.
Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.
Adv Sci (Weinh)
December 2024
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
The oxidative potential (OP) of particulate matter (PM) is crucial for understanding its ability to generate reactive oxygen species. However, the major chemical drivers influencing OP still need to be better understood. This study investigated the seasonal variations of OP and identified key drivers and source mechanisms in the industrial city of Zibo, located in North China Plain.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.
Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Carbon Science and Technology (INCAR-CSIC), 33011 Oviedo, Spain.
The growing demand for clean, decentralized energy has increased interest in blue energy, which generates power from water with different salt concentrations. Despite its potential as a renewable, low-cost energy source, optimizing electrode materials remains a challenge. This work presents a nanomaterial developed via microwave-assisted sol-gel methodology for blue energy applications, where ion diffusion and charge storage are critical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!