The performance of aeration - one of the most costly processes at water resource recovery facilities - is heavily impacted by actual wastewater characteristics which are commonly taken into account using the alpha factor (α). This factor varies depending on hydraulic and organic loading; such variance includes both time and spatial fluctuations. In standard design practice, it is often considered as a fixed number, or at best, a predefined time series. The objective of this paper is to propose a new method of predicting plantwide trends in the α factor through the use of process modelling which can accommodate diurnal and seasonal variations. The authors' concept takes into account the dependence of α on sludge retention time in the form of degradation kinetics, the effects of organic loading (influent filtered COD), the presence or absence of anoxic zones, diffuser depth, and the impact of high MLSS found in certain, e.g., MBR, technologies. The developed model was calibrated using data from numerous facilities, relying on off-gas measurements and tests in clean and process water. Model validation was carried out against averaged α factor gradient data from one plant, and against diurnal air flow measurements from another. The Benchmark Simulation Model 1 configuration was used to demonstrate the applicability of the proposed model - in estimation of blower energy consumption and peak air flow requirements - comparing it with constant and scheduled α factor-based approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.118339 | DOI Listing |
BMC Cancer
January 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.
Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.
Environ Pollut
January 2025
University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA. Electronic address:
Airborne particulate matter (PM) in urban environments poses significant health risks by penetrating the respiratory system, with concern over lung-deposited surface area (LDSA) as an indicator of particle exposure. This study aimed to investigate the diurnal trends and sources of LDSA, particle number concentration (PNC), elemental carbon (EC), and organic carbon (OC) concentrations in Los Angeles across different seasons to provide a comprehensive understanding of the contributions from primary and secondary sources of ultrafine particles (UFPs). Hourly measurements of PNC and LDSA were conducted using the DiSCmini and Scanning Mobility Particle Sizer (SMPS), while OC and EC concentrations were measured using the Sunset Lab EC/OC Monitor.
View Article and Find Full Text PDFTalanta
January 2025
School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China; Institute of Solid State Physics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:
Precise detection of ultralow-level antibiotics, such as picomole, in aqueous environments is significant for human health, however, it presents a great challenge to the adsorption capacity and electrocatalytic ability of sensing materials. Here, we used a one-step hydrothermal method to in situ grow spindle-like CoFe-based metal-organic frameworks (MOFs) with a size of about 50 nm in the region of hydrophilic MXene-loading hydrophobic carbon paper. By combining MOFs with abundant adsorption sites and MXene with high conductivity, the problems of adsorption and electrons transfer of ultralow-level antibiotics have been solved, and achieving precise detection of picomole-level antibiotics.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China. Electronic address:
Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
Regeneration of diabetic bone defects remains a formidable challenge due to the chronic hyperglycemic state, which triggers the accumulation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To address this issue, we have engineered a bimetallic metal-organic framework-derived Mn@CoO@Pt nanoenzyme loaded with alendronate and Mg ions (termed MCPtA) to regulate the hyperglycemic microenvironment and recover the osteogenesis/osteoclast homeostasis. Notably, the Mn atom substitution in the CoO nanocrystalline structure could modulate the electronic structure and significantly improve the SOD/CAT catalytic activity for ROS scavenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!