Swiss mice belong to an outbred strain of mice largely used as a model for experimental obesity induced by high fat diet (HFD). We have previously demonstrated that a given cohort of age-matched Swiss mice is hallmarked by heterogeneous changes in body weight when exposed to HFD. The reasons underlying such variability, however, are not completely understood. Therefore we aimed to clarify the mechanisms underlying the variability in spontaneous weight gain in age-matched male swiss mice. To achieve that, individuals in a cohort of age-matched male Swiss mice were categorized as prone to body mass gain (PBMG) and resistant to body mass gain (RBMG). PBMG animals had higher caloric intake and body mass gain. RBMG and PBMG mice had a similar reduction in food intake when challenged with leptin but only RBMG exhibited a drop in ghrelin concentrations after refeeding. PBMG also showed increased midbrain levels of ghrelin receptor (Ghsr) and Dopamine receptor d2 (Drd2) mRNAs upon refeeding. Pharmacological blockade of GHSR with JMV3002 failed to reduce food intake in PMBG mice as it did in RBMG. On the other hand, the response to JMV3002 seen in PBMG was hallmarked by singular transcriptional response in the midbrain characterized by a simultaneous increase in both tyrosine hydroxylase (Th) and Proopiomelanocortin (Pomc) expressions. In conclusion, our data show that differences in the expression of genes related to the reward system in the midbrain as well as in ghrelin concentrations in serum correlate with spontaneous variability in body mass and food intake seen in age-matched male Swiss mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2022.111646DOI Listing

Publication Analysis

Top Keywords

swiss mice
24
body mass
20
male swiss
16
food intake
16
age-matched male
12
mass gain
12
mice
9
cohort age-matched
8
underlying variability
8
gain rbmg
8

Similar Publications

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder worldwide, and microglia are thought to play a central role in neuroinflammatory events occurring in AD. Chemerin, an adipokine, has been implicated in inflammatory diseases and central nervous system disorders, yet its precise function on microglial response in AD remains unknown.

Methods: The APP/PS1 mice were treated with different dosages of chemerin-9 (30 and 60 µg/kg), a bioactive nonapeptide derived from chemerin, every other day for 8 weeks consecutively.

View Article and Find Full Text PDF

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

Background: Intratumor-resident bacteria represent an integral component of the tumor microenvironment (TME). Microbial dysbiosis, which refers to an imbalance in the bacterial composition and bacterial metabolic activities, plays an important role in regulating breast cancer development and progression. However, the impact of specific intratumor-resident bacteria on tumor progression and their underlying mechanisms remain elusive.

View Article and Find Full Text PDF

Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging.

J Neuroinflammation

January 2025

Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.

Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.

Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!