Understanding shear thickening fluids (STFs) is critically important in a broad spectrum of fields ranging from biology to military. STFs are referred to the suspension of solid particles in an inert carrier liquid. Customizing the thickening behavior is vital for obtaining desired properties. Hence, comprehending shear thickening mechanisms is necessary to fully understand the factors affecting the shear thickening response of the STFs. Herein, we systematically investigate the effects of a wide range of parameters, from inherent properties of the constituents, including size and surface chemistry of the suspended particles, to practical conditions such as temperature and shear history, on the shear thickening behavior of fumed silica nanoparticles (NPs)-based suspensions in a polyethylene glycol (PEG) medium. Accordingly, increasing the hydrophobicity of the silica NPs or decreasing the NP size transforms the suspensions from sol to gel. The sol systems exhibit a strong shear thickening response, while shear thinning behavior is prominent in the strong gel systems. Hybridization of different silica NPs is also leveraged to tune the shear thickening behavior. In addition, we showcase the decisive role of operating temperature or shear history on the shear thickening behavior of suspensions. For instance, in terms of the shear history, above a critical value of preshear, the shear thickening behavior occurs at lower shear rates for STFs containing hydrophilic NPs. It is believed that the provided insights in this study can pave the way for developing advanced STFs with prescribed features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c00591 | DOI Listing |
Neurogastroenterol Motil
January 2025
Trisco Foods, Carole Park, Queensland, Australia.
Introduction: Fluid thickeners used in the management of oropharyngeal dysphagia exhibit non-Newtonian shear-thinning rheology, impacting their viscosity during deglutition. This study investigated how the rheological properties of thickened fluids affect pharyngeal swallowing parameters in patients with oropharyngeal motor disorders diagnosed by pharyngeal high-resolution manometry impedance (P-HRM-I).
Methods: Seventy-two patients (18-89 years) referred for P-HRM-I were diagnostically assessed with a 10 mL thin bolus.
Vasc Med
January 2025
Department of Surgery, Section of Vascular Surgery, Conrad Jobst Vascular Laboratories, University of Michigan Health System, Ann Arbor, MI, USA.
Interventional therapies to relieve chronic deep vein thrombosis (DVT) fail through inability to penetrate, cross, and remove the occlusion. Development of suitable tools requires fundamental understanding of chronic DVT mechanical properties and a reliable model for testing. Female farm swine underwent a novel, endovenous generation of long-segment unilateral iliac vein thrombosis.
View Article and Find Full Text PDFSoft Matter
January 2025
James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.
We measure the response of open-cell polyurethane foams filled with a dense suspension of fumed silica particles in polyethylene glycol at compression speeds spanning several orders of magnitude. The gradual compressive stress increase of the composite material indicates the existence of shear rate gradients in the interstitial suspension caused by wide distributions in pore sizes in the disordered foam network. The energy dissipated during compression scales with an effective internal shear rate, allowing for the collapse of three data sets for different pore-size foams.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Analytical Chemistry and Instrumental Analysis, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. Electronic address:
Glioblastoma (GBM) is a notoriously aggressive primary brain tumor characterized by elevated recurrence rates and poor overall survival despite multimodal treatment. Local treatment strategies for GBM are safer and more effective alternatives to systemic chemotherapy, directly tackling residual cancer cells in the resection cavity by circumventing the blood-brain barrier. Molecularly imprinted polymers (MIPs) are promising drug delivery systems due to their high-affinity binding cavities that enable tailored release kinetics.
View Article and Find Full Text PDFScience
January 2025
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
Architected materials derive their properties from the geometric arrangement of their internal structural elements. Their designs rely on continuous networks of members to control the global mechanical behavior of the bulk. In this study, we introduce a class of materials that consist of discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected materials (PAMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!